タグ

DBに関するkazoooooのブックマーク (4)

  • SQLが重いときに見るお気軽チューニング方法

    SQLのチューニング方法 昔Qiitaで書いたものをzennうつして、若干の修正、追加をしてみました。 ORACLEでの経験を元に書いていますがコストベースのリレーショナルデータべースなら大体共通の考え方だと思うので他にも使えると思います。 SQLのチューニングといえば比較的容易に済むインデックスをとりあえず作成する。といった対応を取られがちですが、数万レコード程度でのデータ量ではあまり効き目がなく(自分の経験則)、どちらかといえば、結合順が大幅に狂ってたりすることが原因のことが多かったりします。よって当にインデックスがないことが原因なのか?を熟考する必要があります。(例えばID以外のフラグとかコードに単項目indexを貼ってるのもみたことがあります。怖いけど実話) また、インデックスを作りすぎるとオプティマイザが狂いやすくなって他のSQLにも悪影響を及ぼしたりするので結構熟慮して追加

    SQLが重いときに見るお気軽チューニング方法
  • データベースを遅くするための8つの方法

    はじめに Twitterのタイムラインを見ていたらバッチ系のプログラムで逐次コミットをやめて一括コミットにしたら爆速になったというのを見ました。当たり前でしょ、と思ったけど確かに知らなければ分からないよね、と思って主に初心者向けにRDBを扱うときの注意点をまとめてみました。 プログラミングテクニック的なところからテーブル設計くらいの範疇でDBチューニングとかは入ってないです。 自分の経験的にOracleをベースに書いていますが、他のRDBでも特に変わらないレベルの粒度だと思います。 大量の逐次コミットをする バッチアプリケーションでDBにデータをインサートすると言うのはかなり一般的な処理です。しかしデータ量が少ない時はともかく大量のインサートを逐次コミットで処理するとめちゃくちゃ遅くなります。数倍から十数倍遅くなることもあるので、10分程度のバッチが1時間越えに化けることもザラにあるので原

    データベースを遅くするための8つの方法
  • MySQL with InnoDB のインデックスの基礎知識とありがちな間違い - クックパッド開発者ブログ

    こんにちは、サービス開発部の荒引 (@a_bicky) です。 突然ですが、RDBMS の既存のテーブルを見てみたら「何でこんなにインデックスだらけなの?」みたいな経験はありませんか?不要なインデックスは容量を圧迫したり、挿入が遅くなったりと良いことがありません。 そんなわけで、今回はレコードを検索するために必要なインデックスの基礎知識と、よく見かける不適切なインデックスについて解説します。クックパッドでは Rails のデータベースとして主に MySQL 5.6、MySQL のストレージエンジンとして主に InnoDB を使っているので、MySQL 5.6 の InnoDB について解説します。 InnoDB のインデックスに関する基礎知識 インデックスの構造 (B+ 木) InnoDB では B+ 木が使われています。B+ 木は次のような特徴を持った木構造です。 次数を b とすると、

    MySQL with InnoDB のインデックスの基礎知識とありがちな間違い - クックパッド開発者ブログ
  • リレーショナルデータベースの仕組み (1/3) | POSTD

    リレーショナルデータベースが話題に挙がるとき、私は何かが足りないと思わずにはいられません。データベースはあらゆるところで使われており、その種類も、小規模で便利なSQLiteからパワフルなTeradataまで様々です。しかし、それがどういう仕組みで機能しているかを説明したものとなると、その数はごくわずかではないでしょうか。例えば「リレーショナルデータベース 仕組み」などで検索してみてください。ヒット数の少なさを実感できると思います。さらにそれらの記事は短いものがほとんどです。逆に、近年流行している技術(ビッグデータ、NoSQLJavaScriptなど)を検索した場合、それらの機能を詳しく説明した記事はたくさん見つかると思います。 リレーショナルデータベースは、もはや大学の授業や研究論文、専門書などでしか扱われないような古くて退屈な技術なのでしょうか? 私は開発者として、理解していないものを

    リレーショナルデータベースの仕組み (1/3) | POSTD
  • 1