TL;DR 機械学習エンジニアは理論と実装の両方が求められる場合が少なくない この二つは割と異なる学びの過程がある気がしているが、自分を例にとってそれを考えてみる かなり強引に言うなら、理論は要素を積み重ねて全体を理解するやり方で、実装は全体から必要な要素を削り出していくやり方、な気がする 自分は実装に関してはどうトレーニングを積んでいくのが良いかいまいち分かっていない 知人と話していてタイトルにあるような話題になった。 機械学習が流行るようになって、これまではサービスを開発するような仕事ではそこまで要求されなかったであろう、数学的な理論とプログラミングによる実装の両方を兼ね備えることの重要性が増している。 これは自分が興味あるような機械学習エンジニアの仕事において、という前提条件の下での話だ。 そんなのなくても仕事ができるとかもっと大事なことがあるとか、意見は色々あるかもしれないけど、こ