3D Packing for Self-Supervised Monocular Depth Estimation paper code Self-supervised Learning with Geometric Constraints in Monocular Video Connecting Flow, Depth, and Camera paper SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation paper HOW MUCH POSITION INFORMATION DO CONVOLUTIONAL NEURAL NETWORKS ENCODE? paper Instance-wise Depth and Motion Learning from Monocular Videos pap
以前からやってみたかったRaspberry Piの物体認識を試してみました。今回はクラウドサービスを使わずに深層学習ライブラリと学習済みモデルを使ってみました。 環境 Raspberry Pi3 (RASPBIAN JESSIE WITH PIXEL 4.4 / Python 3.4.2) LOGICOOL ウェブカム HD画質 120万画素 C270 ミニロボットPC等用スピーカー小型かわいい白 7インチ(1024*600) IPS液晶パネル ディスプレイ 今までカメラモジュールを利用していたのですが、OpenCVでストリーミングをさせるためWebカメラを購入しました。ついでにちょっと可愛らしいロボット型のスピーカーも合わせて買ってみました。 ロボット型のスピーカーがWebカメラに映った物をしゃべってくれます(英語です)。 こんな感じ Deep Learning Object Recog
「機械学習」というワードになんとなく惹かれつつも、具体的にやりたいことがあるわけでもないので、手を動かすことなくただひたすら「いつかやる」ために解説記事やチュートリアル記事を集める日々を過ごしていたのですが、このままじゃイカン!と Machine Learning Advent Calendar 2014 - Qiita に参加登録してみました。 が、やはり何もしないまま当日を迎えてしまったので、お茶濁しではありますが、せめて「機械学習ってどんな手法やライブラリがあって、どんな応用先があるのか?」というあたりをざっくり把握して最初に何をやるのか方向付けをするためにも、たまりにたまった機械学習系の記事をいったん整理してみようと思います。 機械学習の概要 特定のライブラリや手法の話ではなく、機械学習全般に関する解説。 機械学習チュートリアル@Jubatus Casual Talks 機械学習チ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く