タグ

ブックマーク / naoya-2.hatenadiary.org (6)

  • クラスカルのアルゴリズム - naoyaのはてなダイアリー

    昨年からはじめたアルゴリズムイントロダクションの輪講も終盤に差し掛かり、残すところ数章となりました。今週は第23章の最小全域木でした。辺に重みのあるグラフで全域木を張るとき、その全域木を構成する辺の合計コストが最小の組み合わせが最小全域木です。 アルゴリズムイントロダクションでは、クラスカルのアルゴリズム、プリムのアルゴリズムの二点が紹介されています。いずれも20世紀半ばに発見された古典的なアルゴリズムです。 二つのうち前者、クラスカルのアルゴリズムは、コスト最小の辺から順番にみていって、その辺を選んだことで閉路が構成されなければ、それは安全な辺であるとみなし、最小全域木を構成する辺のひとつとして選択します。これを繰り返しているうちに最小全域木が構成されるというアルゴリズムです。 今日はクラスカルのアルゴリズムを Python で実装してみました。扱うグラフは書籍の例を使ってみました。以下

    クラスカルのアルゴリズム - naoyaのはてなダイアリー
  • Logarithmic merging - naoyaのはてなダイアリー

    IIR の第4章 Dynamic indexing では検索用のインデックスにおいて対象とする文書に頻繁に更新が発生する場合にどうそれを扱うべきかという話題を扱っています。ここで "Logarithmic merging" という話が出てきます。以前に読んだ際に良く理解できなかったので、改めて復習してみました。 Dynamic indexing 頻繁に検索対象の文書群に更新が発生する場合の問題点は、(postings ファイルはディスク上にあるので) 転置インデックスをその都度構築し直すコストが高くなってしまうというところです。かといって更新をしないと、検索結果が古いままでヒットすべきものがヒットしなくなってしまいます。そこで Dynamic indexing の戦略を採ります。ディスク上の大きなインデックスであるメインのインデックスに加えて、インメモリの小さな補助インデックスを用意し、更

    Logarithmic merging - naoyaのはてなダイアリー
  • B木 - naoyaのはてなダイアリー

    昨年から続いているアルゴリズムイントロダクション輪講も、早いもので次は18章です。18章のテーマはB木(B Tree, Bツリー) です。B木はマルチウェイ平衡木(多分木による平衡木)で、データベースやファイルシステムなどでも良く使われる重要なデータ構造です。B木は一つの木の頂点にぶら下がる枝の数の下限と上限を設けた上、常に平衡木であることを制約としたデータ構造になります。 輪講の予習がてら、B木を Python で実装してみました。ソースコードを最後に掲載します。以下は B木に関する考察です。 B木がなぜ重要なのか B木が重要なのは、B木(の変種であるB+木*1など)が二次記憶装置上で効率良く操作できるように設計されたデータ構造だからです。データベースを利用するウェブアプリケーションなど、二次記憶(ハードディスク)上の大量のデータを扱うソフトウェアを運用した経験がある方なら、いかにディ

    B木 - naoyaのはてなダイアリー
  • MapReduce - naoyaのはてなダイアリー

    "MapReduce" は Google のバックエンドで利用されている並列計算システムです。検索エンジンのインデックス作成をはじめとする、大規模な入力データに対するバッチ処理を想定して作られたシステムです。 MapReduce の面白いところは、map() と reduce() という二つの関数の組み合わせを定義するだけで、大規模データに対する様々な計算問題を解決することができる点です。 MapReduce の計算モデル map() にはその計算問題のデータとしての key-value ペアが次々に渡ってきます。map() では key-value 値のペアを異なる複数の key-value ペアに変換します。reduce() には、map() で作った key-value ペアを同一の key で束ねたものが順番に渡ってきます。その key-values ペアを任意の形式に変換すること

    MapReduce - naoyaのはてなダイアリー
  • Linux のプロセスが Copy on Write で共有しているメモリのサイズを調べる

    Linux は fork で子プロセスを作成した場合、親の仮想メモリ空間の内容を子へコピーする必要があります。しかしまともに全空間をコピーしていたのでは fork のコストが高くなってしまいますし、子が親と同じようなプロセスとして動作し続ける場合は、内容の重複したページが多数できてしまい、効率がよくありません。 そこで、Linux の仮想メモリは、メモリ空間を舐めてコピーするのではなく、はじめは親子でメモリ領域を共有しておいて、書き込みがあった時点で、その書き込みのあったページだけを親子で個別に持つという仕組みでこの問題を回避します。Copy-On-Write (CoW) と呼ばれる戦略です。共有メモリページは、親子それぞれの仮想メモリ空間を同一の物理メモリにマッピングすることで実現されます。より詳しくは コピーオンライト - Wikipedia などを参照してください。 この CoW に

    Linux のプロセスが Copy on Write で共有しているメモリのサイズを調べる
  • naoyaのはてなダイアリー - MyISAM vs InnoDB

    あくまで憶測で仮説でしかないんですが。 MySQL のストレージエンジンのうち代表的な二つ、MyISAM と InnoDB はよく MyISAM: Read は速いけどテーブルロックのため並行性が低い。運用が簡単。 InnoDB: MyISAM より Read は遅いけど並行性が高い 。行レベルロックなので。あとトランザクションや外部キー制約。運用が MyISAM よりちょっとめんどくさい。 という区別がされます。ここから転じて、 MyISAM は参照系クエリが大部分を占める場合に適用すると良い。例えば blog アプリケーションとか。 InnoDB は更新系クエリが多い場合に適用すると良い。 と言わたりします。実践ハイパフォーマンスMySQL でも第2章 ストレージエンジン(テーブル型) P.30 に アプリケーションでトランザクションを使用する必要がなく、主に SELECT または I

    naoyaのはてなダイアリー - MyISAM vs InnoDB
    kishir
    kishir 2007/08/12
  • 1