本講座では計8回にわたり、ディープニューラルネットワークの原理と実装について 説明してきた。ニューラルネットワークの原理は基本的には 勾配降下法であり、その基盤となっているのが関数の微分可能性である。 ニューラルネットワークにはさまざまな形態が存在するが、 画像処理・画像認識の場合は畳み込みニューラルネットワークが非常に 有効であることがわかっている。また、ニューラルネットワークの 出力形式や損失関数を変えることにより、ニューラルネットワークが 物体検出や奥行き推定など、さまざまなタスクに利用可能であることを紹介した。 さて、本講座は「真面目なプログラマのための」ディープラーニング入門、 と銘打っている。真面目なプログラマとは何か? 諸説いろいろあるだろうが、 多くのプログラマは、ソフトウェア開発において 仕様の明確さや、 システムの効率・堅牢性、そして 保守のしやすさといったものを 追求