2014年11月7日のブックマーク (3件)

  • N-gram コーパス - 日本語ウェブコーパス 2010

    概要 ウェブページに出現する形態素 N-gram と文字 N-gram を頻度とともに収録したコーパスです.各 N-gram コーパスには,頻度 10/100/1000 以上の 1-gram から 7-gram までが収録されています. N-gram コーパスの構築においては,Google N-gram コーパスと同様の前処理を施しています.句点・感嘆符・疑問符を文の区切りとして利用しているので,「モーニング娘。」や「Yahoo!」などの固有名詞については,不適切な文の区切りがおこなわれています.また,文の区切りは削除するようになっているため,コーパス中に句点・感嘆符・疑問符は出現しません. 形態素 N-gram コーパス,文字 N-gram コーパスともに,文境界マーク(<S>,</S>)は採用していますが,未知語トークン(<UNK>)は採用していません.また,文字 N-gram コーパ

  • Caffe | Deep Learning Framework

    Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Why Caffe? Expressive architecture encourages application and innovat

  • PyData Tokyo Meetup #1でCaffeとmafについて発表しました - Preferred Networks Research & Development

    10月30日のPyData Tokyo MeetUp #1にて「Caffeとmafを用いたディープラーニング開発・実験方法」というタイトルで発表を行いました。 当日の発表に関する情報はconnpassにまとめられています(私以外の発表の資料へのリンクや当日のUstreamでの配信へのリンクもあります)。また、当日までのtwitterの反応はtogetterにもまとめられています。 PyData Tokyo Meetup #1 – Deep Learning(connpass) PyData Tokyo MeetUp #1(togetter) 発表資料はSlideShareで公開しています(当日きちんと答えられなかった質問の回答を資料の最後に追記しました)。 今回はディープラーニングライブラリの中でも特に開発が活発に行われているCaffeと、PFI/PFNで開発している実験ビルドツールのma

    PyData Tokyo Meetup #1でCaffeとmafについて発表しました - Preferred Networks Research & Development