Hadoopソースコードリーディング第5回 : ATNDHadoopreading05 data intensive3View more presentations from nokuno. 以下の資料の紹介です。Jimmy Lin » Data-Intensive Text Processing with MapReduce
「数兆件のデータも対話的に、高速に分析できる」。グーグルは5月19日にこのような表現で新しいサービス「BigQuery」の登場を紹介するエントリを、ブログにポストしています。 グーグルが公開したBigQueryは、Hadoopやデータウェアハウスなどを用いて多くの企業が行おうとしている大規模データ(いわゆる「Big Data」)の分析を、グーグルのクラウドで可能にします。利用者はGoogle Storage経由で大規模データを転送し、SQLライクな命令によって抽出や分析を行います。 まるでグーグルが大規模データ処理のMapReduceをホスティングし、その機能をサービスとして提供するようなものがBigQueryといえます(ただし公開された「BigQuery」の説明には、内部でMapReduceを利用しているのかどうかの記述はないのため、MapReduce「的」なサービスと表現すべきかもしれ
まず、 1 の入力ファイルを分割する方法は、InputFormatクラスの、getSplits関数を上書きすることで、カスタマイズできます。 また、 3 のInputSplitから、KeyとValueを抽出する処理も、InputFormatクラスを通じてカスタマイズできます。 InputFormatのgetRecordReader関数を通じて、RecordReaderクラスを生成するのですが、これに任意のRecordReaderクラスを指定すればOKです。 2 のMap処理ですが、ユーザが指定したMapperクラスの処理を実行します。 Mapperクラスは、MapRunnerクラスを通じて、初期化処理、map関数を繰り返す過程、終了処理といった一連の流れを実行します。 MapRunnerクラスをカスタマイズすれば、こうした流れを制御することができます。 0.20.0からの新しいMapRed
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く