You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
前回の記事ではchainerのインストールからサンプルコードを使って画像識別問題を解くところまでやりました。 hi-king.hatenablog.com 今回の記事では回帰・分類問題用のシンプルなニューラルネットの作り方をやろうと思います。andとxorの論理式を学習させます。chainerでの実装の学習と、あとニューラルネットの教育目的に使いやすいなーと思ったので。2層のニューラルネットまで段階をふんで解説してるんですが、プログラム読むほうが得意、って方は一番最後のコードを先に読んだほうがわかりやすいかもしれません。 追記(7/13)型チェック chainer1.1.0から型チェックが入ったので(https://github.com/pfnet/chainer/pull/95)、識別にはfloat32を入力してint32を出力、回帰にはfloat32を入力してfloat32を出力、とい
1日ちょっと前に、PFNから新しいディープラーニングフレームワーク"chainer"が公開されました[1]。触ってみた感じの特徴は、pythonのコードで完結するので、システムに組込みしやすそうで、処理の内容も読みやすい。同時に、処理の内容に興味を持たずに使うには難しいという思いでした。ベースにしてあたらしいツールを作るには最適に感じるので、これから、chainerをベースにした様々な用途のツールができるのが期待されます。 CPU用インストール ~ MNISTのトレーニング ここでは、chainerのチュートリアル[1]に書いてあるとおりにインストールと初期タスクをおこなうだけです。 インストールは、githubからソースを落としてきてpython setup.py installでも、pipで入れてもいいと思います。とりあえずここではpip pip install chainer これで
Preferred Infrastructure(以下PFI)からスピンオフした会社、Preferred NetworksのリリースしたDeepLearningライブラリのChainerがすごい、と話題になっています。*1 解説 Deep Learning のフレームワーク Chainer を公開しました | Preferred Research 公式 Chainer: A flexible framework of neural networks GitHub pfnet/chainer · GitHub ドキュメント Chainer – A flexible framework of neural networks — Chainer 1.1.0 documentation おそらく初露出 ディープラーニング最近の発展とビジネス応用への課題 公式ツイッター chainer (@Chai
ChainerでAutoencoderを試してみる記事です。前回の記事、「【機械学習】ディープラーニング フレームワークChainerを試しながら解説してみる。」の続きとなります。ディープラーニングの事前学習にも使われる技術ですね。 本記事で使用したコードはコチラから取得できます。 1.最初に# AutoencoderとはAuto(自己) encode(符号化)er(器)で、データを2層のニューラルネットに通して、自分自身のデータと一致する出力がされるようパラメーターを学習させるものです。データだけあれば良いので、分類的には教師なし学習になります。 学習フェーズ こんなことをして何が嬉しいのかというと、 入力に合わせたパラメーター$w_{ji}$を設定できる。(入力データの特徴を抽出できる) その入力に合わせたパラメーターを使うことでディープなニューラルネットでの学習を可能にする(ランダム
今話題のDeep Learning(深層学習)フレームワーク、Chainerに手書き文字の判別を行うサンプルコードがあります。こちらを使って内容を少し解説する記事を書いてみたいと思います。 (本記事のコードの全文をGitHubにアップしました。[PC推奨]) とにかく、インストールがすごく簡単かつ、Pythonが書ければすぐに使うことができておすすめです! Pythonに閉じてコードが書けるのもすごくいいですよね。 こんな感じのニューラルネットワークモデルを試してみる、という記事です。 主要な情報はこちらにあります。 Chainerのメインサイト ChainerのGitHubリポジトリ Chainerのチュートリアルとリファレンス 1. インストール# まずは何はともあれインストールです。ChainerのGitHubに記載の"Requirements" ( https://github.c
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く