Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

既存の LLM コード生成の問題 LLM は行カウントやワードカウントが苦手。 例えば自分は SourceMap を扱うコードのテストを書かせようとしたが、モックデータの line:column がガバガバな位置を指してまともにテストにならない。行カウント/ワードカウントができないのはつまり diff がうまく生成できない。 これらの問題があって、コードを生成するパイプラインを組む場合、 全文出力が主流になっている。 ここで何が問題になるかというと、コードが膨らんで来た時に、(書き変える対象が一部だとしても)生成が顕著に遅くなる。うまく生成できなかった時にリトライを繰り返すと、問題がさらに悪化する。 改善手法の提案: 明示的な Line Number の付与 最近の LLM は入力ウィンドウがある程度大きくても、そこそこの速度で応答する。(お金はかかるが...) 問題は生成速度にある。特に
GitHub、Copilotでより高い精度のコードを生成させる方法を指南。関連ファイルを開く、トップレベルのコメントを書くなど 記事の中で、プログラマが意図したコードを高い精度で生成AIに生成させるためのテクニックがいくつも紹介されています。これらのテクニックはCopilotに限らず、生成AIを用いてコードを生成させる際の参考になると思われます。 この記事では、紹介されているテクニックのポイントをまとめてみました。 GitHub Copilotでよりよいコードを生成するためのポイント 生成AI活用の基本として説明されたのは、大規模言語モデルを用いた生成AIでは、コンテキスト(文脈)に基づいて予測を行うように設計されているため、生成AIに対する入力やプロンプトがコンテキストに富んでいるほど良い出力が得られる、という原則です。 それゆえ、GitHub CopilotおよびGitHub Copi
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く