タグ

アルゴリズムに関するlearnのブックマーク (14)

  • 計算量オーダーの求め方を総整理! 〜 どこから log が出て来るか 〜 - Qiita

    NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。今回は計算量オーダーの求め方について書きます。 0. はじめに 世の中の様々なシステムやソフトウェアはアルゴリズムによって支えられています。Qiita Contribution ランキング作成のために用いるソートアルゴリズムのような単純なものから、カーナビに使われている Dijkstra 法、流行中のディープラーニングに用いられている確率的勾配降下法など、様々な場面でアルゴリズムが活躍しています。アルゴリズムとはどんなものかについて具体的に知りたい方には以下の記事が参考になると思います: アルゴリズムとは何か ~ 文系理系問わず楽しめる精選 6 問 ~ アルゴリズムを学ぶと $O(n^2)$ や $O(n\log{n})$ や $O(2^n)$ といった計算量オーダーの概念が登場します。こうした記法を見ると

    計算量オーダーの求め方を総整理! 〜 どこから log が出て来るか 〜 - Qiita
  • 01ナップサック問題を動的計画法で解く場合の考え方

    重さの単位はkgで、問題の都合上整数です。 その他のツッコミどころとかはスルーでお願いします。 まずはとっかかりとなる考え方として、それぞれの品を持っていく/置いていくで場合分けをして総当りのグラフを書きましょう。 1つ目の品はカメラの三脚(3kg、7千円)です。 荷物が何もないところから始まって、三脚を持って行かない場合はそのまま、持っていく場合はその分の重さと価値を足します。 次の品物は手提げ金庫(2kg、4千円)です。 総当りということで、場合分けの数は倍々に増えていきます。 次の品物はゲーム機(2kg、8千円)です。 また前の品物の倍のノードが追加されました。 図でこれ以上描くのは面倒ですね。 面倒かどうかはさておき、2の品数乗のノードが必要になるというのは性能的に問題があります。 例題は6個なので26+25+24...程度のノードしか使いませんが、品数が100個の場合2100+.

  • ランキングのつくりかた:Kenn's Clairvoyance

    遅ればせながら、あけましておめでとうございます。 先週には、ベイエリアの友人たちがやっているEchofonがPostUpに買収されるなど、幸先のよい新年のスタートとなりました。 さて、最近ホットなマーケットといえばソーシャルゲームですが、ゲームといえばリーダーボード。ハイスコアのランキング友人や見知らぬ人たちと競うのは、ビデオゲームが誕生した1970年代から欠かせない要素でした。 ところが、インターネット経由で100万人規模のプレイヤーがつながるようになってきた現在、その全体をランキングづけするのは、技術的にも大きなチャレンジとなってきました。 今回は、そのリーダーボードのつくりかたについて、ぼくらの作っているソーシャルゲーム・プラットフォームであるPankiaの運用で得られた知見を共有したいと思います。 自分の順位を知る方法 リーダーボードの基的な考え方はシンプルで、それはつまり「ユ

    ランキングのつくりかた:Kenn's Clairvoyance
  • アルゴリズムの勉強のしかた - きしだのHatena

    この記事で、アルゴリズムの勉強はアルゴリズムカタログを覚えることじゃないよということを書きました。 プログラムの理論とはなにか アルゴリズムの勉強というのは、スポーツで言えば腕立て伏せや走り込みみたいな基礎体力を養うようなもので、「ソートなんか実際に自分で書くことないだろう」とかいうのは「サッカーは腕つかわないのに腕立ていらないだろう」とか「野球で1kmも走ることなんかないのに長距離の走り込みいらないだろう」とか言うようなものです。 Twitterでアルゴリズムの勉強とはなにかと尋ねられて、「アルゴリズムの基的なパターンを知って、それらの性質の分析のしかたをしって、いろいろなアルゴリズムでどのように応用されているか知って、自分が組むアルゴリズムの性質を判断できるようになることだと思います。 」と答えたのですが、じゃあ実際どういうで勉強すればいいか、ぼくの知ってるからまとめてみました。

    アルゴリズムの勉強のしかた - きしだのHatena
  • ChordアルゴリズムによるDHT入門 - 情報科学屋さんを目指す人のメモ

    何かのやり方や、問題の解決方法をどんどんメモするブログ。そんな大学院生の活動「キャッシュ」に誰かがヒットしてくれることを祈って。 Chordの解説ページは移転しました。こちらをご覧ください→「ChordアルゴリズムによるDHT入門」 Symphonyの解説を書いたとき、「Chordの理解を前提」にしていたので、今回はChordの細かい解説スライドを作成しました。 Chordの説明はDHTの中でももっともたくさん書かれているものだと思います。 もちろん、それと同じように書いたのではほとんど意味がないと思うので、 論文を読んでもすぐには分からない全体像から、どこが重要か、どの点によってメリットが生まれているかなどに注目しつつ、飲み込みやすいストーリーになるように注意しました。 なおかつ、出来るだけ論文からぶっ飛びすぎないようにも気を付けてみました。 まだ荒削りなのですが、とりあえずどうぞ。

  • インテル・AMDのCPUアーキテクトが明かす: GNU grep が速い理由 - karasuyamatenguの日記

    GNU grepの元祖作者がFreeBSDハッカーをschoolしている。 http://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html FreeBSD対GNU grepのパフォーマンスを議論していると思われるとことに「俺はgrepの初代作者だ」と名乗って現われた男がいる。 履歴書(http://duckytech.com/resume.pdf)を見ると、GNU coreutilsに貢献した後、インテルやAMDCPUアーキテクトを勤めている男だ。これは話を聞いた方がよさそうだ。 FreeBSDユーザでもある彼はリストを観閲していたらたまたまGNU対BSDのgrep論争に当ってしまったようだ。BSDのリストにGNU grepの秘密を解く。 技1: 全ての入力バイトを見ないから速い 技2: 見るバイトに関

    インテル・AMDのCPUアーキテクトが明かす: GNU grep が速い理由 - karasuyamatenguの日記
  • LSH (Locality Sensitive Hashing) を用いた類似インスタンスペアの抽出 - mixi engineer blog

    GW 中の長距離移動のために体調が優れない takahi-i です. 今回は巨大なデータをマイニングする一つの技術として LSH (Localtiy Sensitive Hashing) を紹介させていただきます. LSH とは LSH は大量なデータから類似度が高いインスタンスのペアを高速に抽出してくれるアルゴリズムです. ここでインスタンスはデータ集合の一つの要素を表します. たとえば扱うデータが E-コマースサイトの購買ログであれば, インスタンスは各ユーザですし, 画像データ集合であれば, インスタンスは個々の画像データです. LSH の詳しい解説については以下のサイトがあります. Wikipedia のエントリ LSH に関する論文がまとめられているページ 稿ではE-コマースサイトの購買履歴データを基に LSH の機能について述べてゆきます. 以下のような E-コマースサイトの

    LSH (Locality Sensitive Hashing) を用いた類似インスタンスペアの抽出 - mixi engineer blog
  • Google App Engineでランキングやページングを実現する - $koherent->diary

    昨日一昨日、Google App Engine (GAE)に関する日最大の勉強会(だと思う)appengine ja night #7 (ajn7)が行われました。 その中で『ランキング問題』が話題に上がりました。『ランキング問題』とは、何十万件もの点数のデータがあるときに、App Engine上で、「◯点は何位です」と高速に求めることは難しい、という問題です。(◯ページ目を表示、というページングもこれと同じ種類の問題になります。) ajn7では「上位でない限り正確な順位は必要ないのではないか」という話になりましたが、Skiplistを用いた検索アルゴリズムを使えば正確かつ高速に順位を求めることができるのではないかと思い、実装&検証してみました。 ランキング(順位取得)のデモ 下記ページで順位取得のデモを動かしています。スコア(点数)を入力すると順位と取得にかかった時間が表示されます(時

    Google App Engineでランキングやページングを実現する - $koherent->diary
  • 経路探索アルゴリズムの「ダイクストラ法」と「A*」をビジュアライズしてみた - てっく煮ブログ

    as詳解 ActionScript 3.0アニメーション ―衝突判定・AI・3DからピクセルシェーダまでFlash上級テクニック を読んでいて、経路探索のアルゴリズムで A* が取り上げられていました。A* については、いろいろ検索して調べたりもしたのですが、やっぱりに書いてあると理解しやすいですね。せっかくなので自分流に実装してビジュアライズしてみました。ダイクストラ法まずは A* の特別なケースでもあるダイクストラ法から見ていきます。クリックすると探索のシミュレーションが開始します。スタート地点(S)からゴール(G)への探索が始まります。色がついたところが「最短経路が決定した場所」です。スタート地点から少しずつ探索が完了していきます。半分ぐらい完了しました。まだまだ進みます。最後まで終わりました。最短経路を黒色矢印で表示しています。ダイクストラ法は、スタート地点から近いノード(=マス

  • 「最強最速アルゴリズマー養成講座」関連の最新 ニュース・レビュー・解説 記事 まとめ - ITmedia Keywords

    最強最速アルゴリズマー養成講座: そのアルゴリズム、貪欲につき――貪欲法のススメ アルゴリズムの世界において、欲張りであることはときに有利に働くことがあります。今回は、貪欲法と呼ばれるアルゴリズムを紹介しながら、ハードな問題に挑戦してみましょう。このアルゴリズムが使えるかどうかの見極めができるようになれば、あなたの論理的思考力はかなりのレベルなのです。(2010/9/4) 最強最速アルゴリズマー養成講座: 病みつきになる「動的計画法」、その深淵に迫る 数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。(2010/5/15) 最強最速アルゴリズマー養成講座: アルゴリズマーの登

  • 人材獲得作戦・4 試験問題ほか - 人生を書き換える者すらいた。

    さて試験問題です。 内容は、壁とスペースで構成された迷路が与えられたとき、スタート地点からゴール地点に至る最短経路を求めよ、というものです。 たとえば、S:スタート G:ゴール *:壁 $:解答の経路 としたとき、 ************************** *S* * * * * * * ************* * * * * ************ * * * * ************** *********** * * ** *********************** * * G * * * *********** * * * * ******* * * * * * ************************** という入力に対し、 ************************** *S* * $$$ * *$* *$$*$ ************

    人材獲得作戦・4 試験問題ほか - 人生を書き換える者すらいた。
  • ダイクストラ法(最短経路問題)

    ダイクストラ法 (Dijkstra's Algorithm) は最短経路問題を効率的に解くグラフ理論におけるアルゴリズムです。 スタートノードからゴールノードまでの最短距離とその経路を求めることができます。 アルゴリズム 以下のグラフを例にダイクストラのアルゴリズムを解説します。 円がノード,線がエッジで,sがスタートノード,gがゴールノードを表しています。 エッジの近くに書かれている数字はそのエッジを通るのに必要なコスト(たいてい距離または時間)です。 ここではエッジに向きが存在しない(=どちらからでも通れる)無向グラフだとして扱っていますが, ダイクストラ法の場合はそれほど無向グラフと有向グラフを区別して考える必要はありません。 ダイクストラ法はDP(動的計画法)的なアルゴリズムです。 つまり,「手近で明らかなことから順次確定していき,その確定した情報をもとにさらに遠くまで確定していく

  • ダイクストラ法, 貪欲アルゴリズム - naoyaのはてなダイアリー

    現実逃避をしながらウェブを眺めていたら ダイクストラ法(最短経路問題) にたどり着きました。単一始点最短路問題におけるダイクストラ法の解説です。 何を思ったのか、図を眺めていたところ動かしたい衝動に駆られて、気付いたらパワポでアニメーションができていました。 http://bloghackers.net/~naoya/ppt/090319dijkstra_algorithm.ppt 実装もしてみました。隣接ノードの表現は、ここではリストを使いました。 #!/usr/bin/env perl use strict; use warnings; package Node; use base qw/Class::Accessor::Lvalue::Fast/; __PACKAGE__->mk_accessors(qw/id done cost edges_to prev/); package Q

    ダイクストラ法, 貪欲アルゴリズム - naoyaのはてなダイアリー
  • B木 - naoyaのはてなダイアリー

    昨年から続いているアルゴリズムイントロダクション輪講も、早いもので次は18章です。18章のテーマはB木(B Tree, Bツリー) です。B木はマルチウェイ平衡木(多分木による平衡木)で、データベースやファイルシステムなどでも良く使われる重要なデータ構造です。B木は一つの木の頂点にぶら下がる枝の数の下限と上限を設けた上、常に平衡木であることを制約としたデータ構造になります。 輪講の予習がてら、B木を Python で実装してみました。ソースコードを最後に掲載します。以下は B木に関する考察です。 B木がなぜ重要なのか B木が重要なのは、B木(の変種であるB+木*1など)が二次記憶装置上で効率良く操作できるように設計されたデータ構造だからです。データベースを利用するウェブアプリケーションなど、二次記憶(ハードディスク)上の大量のデータを扱うソフトウェアを運用した経験がある方なら、いかにディ

    B木 - naoyaのはてなダイアリー
    learn
    learn 2009/04/13
    なぜHDDでBツリーが重要か?とSSDによってその状況が変わりうること
  • 1