タグ

ブックマーク / s0sem0y.hatenablog.com (4)

  • 線形層と比較した畳み込み層 - HELLO CYBERNETICS

    はじめに 全結合層 全結合層の数式 非全結合層 畳み込み層 入力成分のindexに着目した非全結合層 非全結合・重み共有層 1D畳み込み層 2Dの畳み込み層 最後に はじめに 今回はニューラルネットワークの基的な構成要素である線形(全結合)層と畳み込み層について簡単に説明します。 これを説明するモチベーションは、「畳み込み層は線形層よりも優れた発展的手法、複雑な手法であるという勘違いが 初学者の中であるのではないかと感じ、それの解消をするためです。 以降、畳み込み層と線形層の最たる違いを主張するために、線形層のことを全結合層と呼ぶことにします。 この呼び名は、TensorFlowやKerasなどのフレームワークで採用されています(layers.dense)。 全結合層 全結合層の数式 まず全結合層について数式を以下に示します。 入力ベクトル$x \in \mathbb R^{D}$に対し

    線形層と比較した畳み込み層 - HELLO CYBERNETICS
    lyiase
    lyiase 2018/03/12
    畳み込み層の役割は特徴を抽出すること、全結合層の役割はそこから出てきた特徴分布を使って判定することだと思ってる。大雑把にはあってるよね?
  • ディープラーニングの応用のための具体的方針まとめ - HELLO CYBERNETICS

    はじめに 目標の設定と指標の決定 目標の設定 指標の決定 評価指標に対する最低限の知識 機械学習における知識(補足) ニューラルネットワークの学習 最初に使うニューラルネットワーク 時間的にも空間的にも独立である複数の特徴量を持つデータ 空間の局所的な構造に意味のある多次元配列データ(例えば画像) 時間的な変動に意味のあるデータ(例えば音声、自然言語) ニューラルネットワークの細かい設定 ユニットの数と層の数 正則化 活性化関数 ドロップアウト バッチ正規化 学習の早期終了 性能が出ない場合 データの追加収集 ニューラルネットの設定をいじる 用いるニューラルネット自体を変更する 新たなニューラルネットワークの考案 コードを書くにあたって データ成形 結果を記録するコード フレームワークの利用 フレームワークの選択 ChainerとPyTorch TensorFlow Keras 最後に は

    ディープラーニングの応用のための具体的方針まとめ - HELLO CYBERNETICS
  • またもやTensorFlowが強化!!深層学習ライブラリ「sonnet」の登場【使ってみた記事紹介を追加】 - HELLO CYBERNETICS

    新たなライブラリsonnet sonnetとは DeepMind社製であること TensorFlowと共に使える TensorFlow TensorFlowの役割 TensorFlowの追加ライブラリ Keras TensorFlow-Fold edward sonnet sonnet使ってみた記事まとめ 多分日語最速で出た使ってみた記事 インストールから丁寧に コードに対するコメントが豊富で参考になる記事 新たなライブラリsonnet sonnetとは DeepMind社が社内で利用していた深層学習ライブラリです。 昨日これがオープンソース化されました。 DeepMind社製であること DeepMindは現在Google傘下の人工知能開発企業です。 圧倒的な専門家集団の集まりであり、深層学習の研究にGoogleが乗り切る際に、DeepMind社は買収されました。その後、資金力と研究力を

    またもやTensorFlowが強化!!深層学習ライブラリ「sonnet」の登場【使ってみた記事紹介を追加】 - HELLO CYBERNETICS
  • SVM、ニューラルネットなどに共通する分類問題における考え方 - HELLO CYBERNETICS

    はじめに 分類問題の基 分類における困難:線形分離不可能 非線形な分類問題 曲線、曲面によって境界を定める=空間を捻じ曲げて線形な境界を定める 素朴な疑問とその回答 次元に自由度がある 分離できる可能性が上がる うまい曲げ方を見つける 学習とは空間の曲げ方を学ぶこと ニューラルネットワーク ニューラルネット最初期 ニューラルネット中期 ニューラルネット現在 過学習 サポートベクターマシン まとめ ディープラーニングの手法については以下の記事を参考に サポートベクターマシンについて数式ベースで理解したい方 はじめに 分類問題の基 分類問題の基はデータがプロットされた空間上に境界面を配置することです。 下記の図のように、2種類のデータを分類する際の境界の配置の仕方は一意に定まりません。 このどちらが良い配置の仕方であるのかも、通常は決定できません。 そのため、境界面を決定するための様々な

    SVM、ニューラルネットなどに共通する分類問題における考え方 - HELLO CYBERNETICS
  • 1