タグ

Deep Learningとpythonに関するlyiaseのブックマーク (4)

  • RecBole

    A unified, comprehensive and efficient recommendation library General and extensible data structure We design general and extensible data structures to unify the formatting and usage of various recommendation datasets. Comprehensive benchmark models and datasets We implement more than 100 commonly used recommendation algorithms, and provide the formatted copies of 43 recommendation datasets. Exten

  • Deep Learning基礎講座演習コンテンツ 公開ページ

    プログラムの最大の特徴の一つは、全てのトピックについて、演習を中心に構成されている点です。実際に手を動かしながら理解を進めることで、効率よく学習することができます。 実際にモデルを学習させながら技術を習得する格的な演習内容となっています。Deep Learningは、モデルが実際に学習する様子を観測し、パラメータを調整することでアプリケーションに応じたパフォーマンス最大化を行うことが非常に重要な技術ですが、この一連の流れを全ての演習で経験しながら重要な要素を身につけることが可能です。

    lyiase
    lyiase 2018/01/24
    仕事に余裕出来たらKerasから脱却するためにやるんだ…。
  • Theano で Deep Learning <3> : 畳み込みニューラルネットワーク - StatsFragments

    Python Theano を使って Deep Learning の理論とアルゴリズムを学ぶ会、第三回。今回で教師あり学習の部分はひと段落。 目次 DeepLearning 0.1 について、対応する記事のリンクを記載。 第一回 MNIST データをロジスティック回帰で判別する 英 第二回 多層パーセプトロン 英 第三回 畳み込みニューラルネットワーク (今回) 英 第四回 Denoising オートエンコーダ 英 第五回 多層 Denoising オートエンコーダ 英 第六回の準備1 networkx でマルコフ確率場 / 確率伝搬法を実装する - 第六回の準備2 ホップフィールドネットワーク - 第六回 制約付きボルツマンマシン 英 Deep Belief Networks 英 Hybrid Monte-Carlo Sampling 英 Recurrent Neural Network

    Theano で Deep Learning <3> : 畳み込みニューラルネットワーク - StatsFragments
  • ディープラーニングフレームワーク とChainerの実装

    PPL2016@岡山 ディープラーニングの研究開発時には、計算を支援するためのフレームワークが用いられる。ChainerはPython上で動くディープラーニングフレームワークの一つである。他の多くのフレームワークと異なり、順伝播処理を行った時の実行履歴情報をもとに逆伝播のグラフを動的に構築するdefine-by-runという方式を採用している。この方式により、分岐や再帰を含むような複雑な構造のネットワークも直感的に構築でき、加えてデバッグが容易である。また、CuPyと呼ばれるNumPyサブセットのCUDAによる行列演算ライブラリを作成し、バックエンドとして利用している。講演では、ディープラーニングフレームワークの基礎と実装、そして課題についてChainerを通して説明する。

    ディープラーニングフレームワーク とChainerの実装
  • 1