以前このブログでも紹介した『集合知プログラミング』を読みつつ、細々とデータマイニングの勉強を続けているこの頃です。それに関連して情報推薦についての研究動向についても調べていたりしているのですが、そうしていくうちに疑問に感じることがありました。 それは、情報推薦アルゴリズムの有効性を正しく評価できるのか?ということです。アルゴリズムというと、素数の判定やソートなどが思い浮かびますが、その場合の有効性はいかに少ない時間で計算結果を出せるかという、定量的な尺度で評価することが可能です。しかし情報推薦の場合は効率性ではなくユーザーの明示化できない欲求に応えることという数値化しにくい目的であるので、果たしてそこで導入されるアルゴリズムの有効性はそもそも評価できるのだろうか?と思うのです。 情報検索のアルゴリズムの場合は、適合率と再現率の2つの尺度によって評価することができます。適合率とは「検索結果中