タグ

algorithmに関するmacchallatteのブックマーク (10)

  • 病みつきになる「動的計画法」、その深淵に迫る

    数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。 もしあなたが知ってしまったなら――病みつきになる動的計画法の集中講義 前回の『アルゴリズマーの登竜門、「動的計画法・メモ化再帰」はこんなに簡単だった』で動的計画法とメモ化再帰を説明しましたが、前回の説明ではまだ勘所をつかめていない方がほとんどでしょう。そこで、これらを完全にマスターするため、今回はもう1つ具体例を挙げながら練習したいと思います。 どういった問題を採用するかは悩みましたが、非常に有名な「ナップサック問題」を取り上げて説明します。 ナップサック問題とは以下のような問題です。 幾つかの品物があり、この品物にはそれぞ

    病みつきになる「動的計画法」、その深淵に迫る
  • 初心者でもアルゴリズムの学習ができる入門本とサイト一覧 -

    Photo by VFS Digital Design 皆さんはアルゴリズムやデータ構造について知っているでしょうか。情報系の学部出身の人は学校の授業でやったかもしれません。一方で学校で情報系の勉強をせずにITエンジニアになったという方は、アルゴリズムやデータ構造について一度は「勉強したほうが良いんだろうな」と思いつつも、実際の業務であんまり必要なさそうだし、難しそうだし、DevOpsやオブジェクト指向やフレームワークについて学ぶので手一杯で未着手、という人も多いのではないでしょうか。 今回はそんな方に向けて、アルゴリズム、データ構造を学ぶ意義と、それらを学ぶときに役立つとサイトについてまとめました。 ■アルゴリズム、データ構造を学ぶ意味 アルゴリズムやデータ構造について語られるときに、非常に良く言われる事として「そんなものは実務に役立たたないので必要ない」という意見があります。当にア

    初心者でもアルゴリズムの学習ができる入門本とサイト一覧 -
  • 404 Blog Not Found:プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10

    2007年11月26日18:15 カテゴリMathLightweight Languages プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10 ぎくっ あなたが一番好きなアルゴリズムを教えてください。 また、その理由やどんな点が好きなのかも教えてください。 - 人力検索はてな なぜぎくってしているかというと、実はすでにアルゴリズムの発注を受けているからなのだ。いつまでも伏せておくのもなんなので、ここにえいやっとdiscloseしてしまうことにする。 アルゴリズム大募集! C&R研究所 - トップページ その下書きもかねて、そこでも紹介しないわけに行かないメジャーなアルゴリズムをとりあえず10個紹介しておくことにする。 ユークリッドの互除法(Euclidean algorithm) その昔(数百年ほど前)は「アルゴリズム」といえば、「手順一般」を指すのではなく、この「互除法

    404 Blog Not Found:プログラマーでなくても名前ぐらい覚えておきたいアルゴリズムx10
  • アルゴリズムの紹介

     ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意して

  • 「最強最速アルゴリズマー養成講座」関連の最新 ニュース・レビュー・解説 記事 まとめ - ITmedia Keywords

    最強最速アルゴリズマー養成講座: そのアルゴリズム、貪欲につき――貪欲法のススメ アルゴリズムの世界において、欲張りであることはときに有利に働くことがあります。今回は、貪欲法と呼ばれるアルゴリズムを紹介しながら、ハードな問題に挑戦してみましょう。このアルゴリズムが使えるかどうかの見極めができるようになれば、あなたの論理的思考力はかなりのレベルなのです。(2010/9/4) 最強最速アルゴリズマー養成講座: 病みつきになる「動的計画法」、その深淵に迫る 数回にわたって動的計画法・メモ化再帰について解説してきましたが、今回は実践編として、ナップサック問題への挑戦を足がかりに、その長所と短所の紹介、理解度チェックシートなどを用意しました。特に、動的計画法について深く掘り下げ、皆さんを動的計画法マスターの道にご案内します。(2010/5/15) 最強最速アルゴリズマー養成講座: アルゴリズマーの登

  • アルゴリズムの勉強のしかた - きしだのHatena

    この記事で、アルゴリズムの勉強はアルゴリズムカタログを覚えることじゃないよということを書きました。 プログラムの理論とはなにか アルゴリズムの勉強というのは、スポーツで言えば腕立て伏せや走り込みみたいな基礎体力を養うようなもので、「ソートなんか実際に自分で書くことないだろう」とかいうのは「サッカーは腕つかわないのに腕立ていらないだろう」とか「野球で1kmも走ることなんかないのに長距離の走り込みいらないだろう」とか言うようなものです。 Twitterでアルゴリズムの勉強とはなにかと尋ねられて、「アルゴリズムの基的なパターンを知って、それらの性質の分析のしかたをしって、いろいろなアルゴリズムでどのように応用されているか知って、自分が組むアルゴリズムの性質を判断できるようになることだと思います。 」と答えたのですが、じゃあ実際どういうで勉強すればいいか、ぼくの知ってるからまとめてみました。

    アルゴリズムの勉強のしかた - きしだのHatena
  • 野球解説者も人工知能に!? AI「ズノさん」が配球や順位予測、人間にできない解析も

    野球解説も人工知能で――電通は3月27日、ディープラーニングなどを活用した「AIスポーツプロジェクト」を始動したと発表した。第1弾として、過去の打席データを解析し、各投手の配球やチームの順位などを予測するスポーツ解説システム「ZUNO」(ズノさん)を開発。来年度にもNHK BSの野球解説番組に解説者として登場させたいという。 ZUNOさんは、データスタジアムが保有する300万球を超える打席データを学習することで、配球や勝敗、順位などを予測する。膨大なデータを解析するデータマイニングを応用することで、人間の解説者では見つけることのできなかった選手の傾向や、試合状況に応じた投球の解析を行うという。 例えば、「特別なカウントで打率が上がる選手」「特別な出塁状況によって、三振率が上がる選手」「この打者は、満月の日に打率が上がる」――など、「知ると少しだけ野球を見る目が変わる」事実の発見を目指す。こ

    野球解説者も人工知能に!? AI「ズノさん」が配球や順位予測、人間にできない解析も
  • 機械学習素人が2か月半で機械学習を入門したことまとめ - あさのひとりごと

    ちまたでは、機械学習がブームのようです。 が、、まったく時代についていけていません。 しかし、機械学習、特に自然言語処理に精通した人の採用にかかわる仕事をしている、、、 にもかかわらず、自然言語処理どころか機械学習が全く分からない。 これでは、いけない。ということで 「機械学習をたしなむ学生の皆さんと、ふわっと雑談ができるレベル」 を目指して、2017年正月明けから勉強を始めました。 ちなみに、どんなにキリが悪くても1日3時間まで!と決めています。 そもそも機械学習に興味関心があるわけではない やらなければならない他の仕事がある 家事育児が優先 なので、すこしでも無理すると続かないためです。 「AIで世界を変えられる!」 「人工知能で想像もできない未来が、、、」 みたいなご時世の中、ありえないほどの低テンションで淡々と勉強しているわけで 逆に、そういう意識低い系人間はそんなに多くないでしょ

    機械学習素人が2か月半で機械学習を入門したことまとめ - あさのひとりごと
  • 人工知能本読みすぎて飽きたけどその中でも記憶に残っている本を紹介する - 基本読書

    この数年人工知能バブルかってぐらい人工知能関連が出まくっていて、最初の頃は律儀に一冊一冊読んでいたもんだが、だんだん飽きてきた(そりゃ読みまくってるんだからそうだ)。やれ人工知能仕事が奪われるだとか奪われない仕事はなんだとかの話は定番だが、定番すぎてそうそう新しい解釈が出てくるわけではない。消える仕事は消えるし、残る仕事の分野もだいたい明らかになってきている。 とはいえそれでも読んでいると「おお、これは視点が良いな」と思えるものもあり、そういうのは読んでいて楽しい。その書き手はやっぱり基的には専門的な知識を持っている人たちだ。認知ロボット工学者であったり、AI研究所に勤めていたり、機械学習の専門家だったりする。最後のはまた特殊事例といえるが、稿ではそうした人工知能飽きた僕の中で記憶に残っているをいくつか紹介してみようと思う。 まずは基的なところを教えてくれる一冊 シンギュラリ

    人工知能本読みすぎて飽きたけどその中でも記憶に残っている本を紹介する - 基本読書
  • 私たちはいかにして環状線で”悪さをする列車”を捕まえたか | プログラミング | POSTD

    文:Daniel Sim 分析:Lee Shangqian、Daniel Sim、Clarence Ng ここ数ヶ月、シンガポールのMRT環状線では列車が何度も止まるものの、その原因が分からないため、通勤客の大きな混乱や心配の種となっていました。 私も多くの同僚と同じように環状線を使ってワンノースのオフィスに通っています。そのため、11月5日に列車が止まる原因を調査する依頼がチームに来た時は、ためらうことなく業務に携わることを志願しました。 鉄道運営会社SMRTと陸上交通庁(LTA)による事前調査から、いくつかの電車の信号を消失させる信号の干渉があり、それがインシデントを引き起こすことが既に分かっていました。信号が消失すると列車の安全機能である緊急ブレーキが作動するため、不規則に電車が止まる原因となります。 しかし8月に初めて発生した今回のインシデントは、不規則に起こっているように見えるた

    私たちはいかにして環状線で”悪さをする列車”を捕まえたか | プログラミング | POSTD
  • 1