クーリー–テューキー型アルゴリズムは、代表的な高速フーリエ変換 (FFT) アルゴリズムである。 分割統治法を使ったアルゴリズムで、N = N1 N2 のサイズの変換を、より小さいサイズである N1, N2 のサイズの変換に分割していくことで高速化を図っている。 最もよく知られたクーリー–テューキー型アルゴリズムは、ステップごとに変換のサイズをサイズ N/2 の2つの変換に分割するので、2 の累乗次数に限定される。しかし、一般的には次数は 2 の累乗にはならないので、素因数が偶数と奇数とで別々のアルゴリズムに分岐する。 伝統的なFFTの処理実装の多くは、再帰的な処理を、系統だった再帰をしないアルゴリズムにより実現している。 クーリー–テューキー型アルゴリズムは変換をより小さい変換に分解していくので、後述のような他の離散フーリエ係数のアルゴリズムと任意に組み合わせることができる。とりわけ、N
An example application of the Fourier transform is determining the constituent pitches in a musical waveform. This image is the result of applying a constant-Q transform (a Fourier-related transform) to the waveform of a C major piano chord. The first three peaks on the left correspond to the frequencies of the fundamental frequency of the chord (C, E, G). The remaining smaller peaks are higher-fr
A Fourier series (/ˈfʊrieɪ, -iər/[1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series.[2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Jos
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く