最適化や凸解析の本のわりと序盤に登場するトピックに 劣微分・劣勾配 と 共役関数 があります。いずれも凸関数にとって特に重要な概念ですが、通常の書籍だと当然動きのない図でしか描かれていないため、イメージしづらい方もいるでしょう。そこで代表的な凸関数について、劣微分・劣勾配および共役関数のアニメーションを作りました(初めて本格的にGoogle Colabを使いました)。本の図よりはもっと鮮やかにイメージでき理解が深まるかと思います。なお、厳密には「閉真凸関数」などと呼ぶべき箇所を簡単のために単に「凸関数」と記述しています。厳密な定義などは専門書(例えば [福島2001,冨岡2015])を参照ください。 多変数関数 $f$ のある一点 $x$ での傾き(昇る方向)を表すベクトルを 勾配 と呼び $\nabla f(x)$ と表しますが、微分不可能な点では勾配を求めることができません。この問題を