Developers Summit 2023 の公募セッションで発表した資料です。https://event.shoeisha.jp/devsumi/20230209/session/4142/
Recommendations The journey to build an explainable AI-driven recommendation system to help scale sales efficiency across LinkedIn Authored byJilei Yang Staff Software Engineer, Machine Learning at LinkedIn | PhD in Statistics April 6, 2022 Co-authors: Jilei Yang, Parvez Ahammmad, Fangfang Tan, Rodrigo Aramayo, Suvendu Jena, Jessica Li At LinkedIn, we have the opportunity to work with many differe
本講座では計8回にわたり、ディープニューラルネットワークの原理と実装について 説明してきた。ニューラルネットワークの原理は基本的には 勾配降下法であり、その基盤となっているのが関数の微分可能性である。 ニューラルネットワークにはさまざまな形態が存在するが、 画像処理・画像認識の場合は畳み込みニューラルネットワークが非常に 有効であることがわかっている。また、ニューラルネットワークの 出力形式や損失関数を変えることにより、ニューラルネットワークが 物体検出や奥行き推定など、さまざまなタスクに利用可能であることを紹介した。 さて、本講座は「真面目なプログラマのための」ディープラーニング入門、 と銘打っている。真面目なプログラマとは何か? 諸説いろいろあるだろうが、 多くのプログラマは、ソフトウェア開発において 仕様の明確さや、 システムの効率・堅牢性、そして 保守のしやすさといったものを 追求
Flower A Friendly Federated Learning FrameworkA unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language.
機械学習系の話題が多い昨今ですが、実際触ってみると期待した精度・結果が出ないなんてことはよくあることではないでしょうか。 機械学習特有の性質として、データ自体がモデルを変化させ、結果として業務に影響を与えたりします。 仮に、機械学習屋さんが精度が出るモデルを構築したと言っても、それを導入するときに、システム全体での品質の維持に苦労したりします。 ということで、不確実性の大きい機械学習系開発についての、設計・テスト戦略でどうやってリスクを低減していけるかが一つカギになってくると思い、方法論について勉強しましたので、そのメモです。 非常に参考にしたのはこちら。 arxiv.org テストそのもののテクニックなどは、一般的なテスト駆動開発に関する書籍を合わせてをご参考ください。 テスト駆動開発 作者:Kent Beck発売日: 2017/10/14メディア: 単行本(ソフトカバー) テスト駆動P
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く