ベイズ推定(ベイズすいてい、英: Bayesian inference)とは、ベイズ確率の考え方に基づき、観測事象(観測された事実)から、推定したい事柄(それの起因である原因事象)を、確率的な意味で推論することを指す[1]。 ベイズの定理が基本的な方法論として用いられ、名前の由来となっている。統計学に応用されてベイズ統計学[2]の代表的な方法となっている。 ベイズ推定においては、パラメータの点推定を求めることは、ベイズ確率(分布関数)を求めた後に、決められた汎関数:の値(平均値もしくは中央値など)を派生的に計算することと見なされる。 標語的には、「真値は分布する」、「点推定にはこだわらない」などの考え方に依拠している。 いま、AおよびXを離散確率変数とする。ここで A を原因、X をそれに対する証拠(つまり原因によって起きたと想定される事象)とするとき、 P(A) = 事象 A が発生する