タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

machine-learningに関するmmorita44のブックマーク (2)

  • 機械学習 - 機械学習の「朱鷺の杜Wiki」

    機械学習とは,Arther Samuel によれば「明示的にプログラミングすることなく,コンピュータに行動させるようにする科学」 のことです. 歴史的には,人工知能の研究分野の中で,人間が日々の実体験から得られる情報の中から,後に再利用できそうな知識を獲得していく過程を,コンピュータにおいて実現したいという動機から生じました. 現在では,数値・文字・画像・音声など多種多様なデータの中から,規則性・パターン・知識を発見し,現状を把握や将来の予測をしたりするのにその知識を役立てることが目的となっています. しましまの私見に基づいて,機械学習の各種の問題を整理しました. ↑ 他分野との関連† 確率論:機械学習で扱うデータは,いろいろな不確定要素の影響を受けており,こうして生じた曖昧さを扱うために利用されます. 統計:観測されたデータを処理する手法として長く研究されてきたため深い関連があります.特

  • Webデータ分析&データサイエンスで役立つ統計学・機械学習系の分析手法10選 - 銀座で働くデータサイエンティストのブログ

    追記 2016年3月に以下の記事によってこの内容はupdateされています。今後はそちらをお読み下さい。 主に自分向けのまとめという意味合いが強いんですが(笑)、僕が実際に2013年6月現在webデータ分析&データサイエンスの実務でツール・ライブラリ・パッケージを利用しているものに限って、統計学・機械学習系の分析手法を10個挙げて紹介してみようと思います。 追記 回帰分析(特に線形重回帰分析) 独立性の検定(カイ二乗検定・フィッシャーの正確確率検定) 主成分分析(PCA) / 因子分析 クラスタリング 決定木 / 回帰木 サポートベクターマシン(SVM) ロジスティック回帰 ランダムフォレスト アソシエーション分析(バスケット分析・相関ルール抽出) 計量時系列分析 おわりに おまけ1:「素性ベクトル+分類ラベル」なるデータ前処理 おまけ2:グラフ理論*10 {igraph}パッケージでグラ

    Webデータ分析&データサイエンスで役立つ統計学・機械学習系の分析手法10選 - 銀座で働くデータサイエンティストのブログ
    mmorita44
    mmorita44 2014/05/13
    とりあえず試してみたい。その前提として、要求内容に合わせたデータ分析手法の選別をすることが何より重要になるな。
  • 1