タグ

ブックマーク / qiita.com/fuyu_quant (2)

  • 敵対的プロンプト技術まとめ - Qiita

    こんにちは@fuyu_quantです。 この記事はLLM Advent Calender 2023 17日目の記事です。 よかったらプライベートで作成したData Science wikiのGPTsも見て下さい! はじめに 今回は敵対的なプロンプト技術についてまとめました.まとめ方は主に,Ignore This Title and HackAPrompt: Exposing Systemic Vulnerabilities of LLMs through a Global Scale Prompt Hacking Competition というLLMに対する敵対的なプロンプト技術に関してまとめた論文を参考にしています.記事の内容が世の中のLLMを使ったサービスの機能向上の役に立てれば幸いです. ※世の中のLLMサービスが敵対的なプロンプト手法に対応できるように公開をしたものであり,利用を

    敵対的プロンプト技術まとめ - Qiita
    mogura00
    mogura00 2023/12/18
  • Open Interpreter - Qiita

    text = """ SeabornのTitanicデータセットを使いLightGBM,XGBoost,CatBoostおよび3つのモデルのアンサンブルした場合で どれが最も精度が良いか検証してください.検証する際は4foldのクロスバリデーションの結果の平均値としてください. 全て日語で対応してください. """ # return_massagesは出力結果のデータを変数として保持するため引数 # 出力結果はmassagesにも保存される messages = interpreter.chat(text, return_messages=True) 了解しました。以下の手順で進めていきます。 1 必要なライブラリをインストールします。これには、seaborn(データセットの取得)、pandas(データの操作)、numpy cikit-learn(クロスバリデーションと精度評価)、lig

    Open Interpreter - Qiita
    mogura00
    mogura00 2023/09/13
  • 1