タグ

プログラミングと並列処理に関するmsakamoto-sfのブックマーク (3)

  • 並行プログラミング入門

    複数のプログラムを同時に実行する「並行プログラミング」は、処理速度を飛躍的に向上させる手法で、タスク管理、プロセス管理、スレッド管理をはじめ、複雑な仕組みについての幅広い知識とテクニックが必要となります。書はRustとアセンブリ、そして一部Cを用い、CPUのアトミック命令、グリーンスレッド、アクターモデル、π計算、ソフトウェア・トランザクショナルメモリ、async/awaitなど、並行プログラミングに関する理論的な背景から実装までをカバー。さらに、アセンブリ実装の理解を深めるため、AArch64とx86-64アーキテクチャの説明も付録として収録。一歩一歩、着実に理解できるように、その仕組みから順を追って詳しく説明します。GitHub上で公開されているソースコードを実際に動かしながら、並行プログラミングの知識と理解を深めることができます。 関連ファイル サンプルコード 正誤表 ここで紹介す

    並行プログラミング入門
  • Pythonの非同期プログラミングを完全理解 - Qiita

    CPUはコンピューターの処理コアで、貴重なリソースになります。CPUの実行時間を無駄遣いし、利用率を低下させると、プログラムの効率も必然的に低下します。上記の表が示したように、1Gbpsのネットワークで2KBのデータをアップロードしたら、CPUの感覚では14時間を過ごしたようなものです。もし、10Mbpsのネットワークとなると、更に100倍も効率が下がります。この長い時間を、CPUをただただ待たせて他の処理に移さない行為はまさにCPUの「青春」の無駄遣いになります。 2-2. 現実の問題点 コスト プログラムはコンピューターの計算リソースを有効に利用できないと、その穴を埋めるために、より多くのコンピューターが必要になってきます。例えば、スクレイピングのプログラムを非同期プログラミングで設計し直すと、もともと必要とした7台のサーバーを3台まで減らせて、コストを57%削減することができます。ち

    Pythonの非同期プログラミングを完全理解 - Qiita
  • マルチスレッド・プログラミングの道具箱

    まえがき クラウド上の仮想サーバから手元のスマートフォンまで、いまや複数のCPUコアを搭載するマルチコアはどこにでもある環境になりました。ハードウェア側が並列(Parallel)・並行(Concurrent)処理に向けて急速に進化する一方で、ソフトウェア側つまりプログラミング言語の進化はさほど追い付いていません。並行処理記述の手軽さを求めた Go言語 や、マルチスレッド処理の安全性を重視する Rust言語 などが登場してはいるものの、「普通にプログラムを記述するだけで複数CPUコア環境で高速に走るプログラミング言語」は遠い夢物語のままです。 モダンなプログラミング言語や並列・並行処理ライブラリは、複雑で難解なマルチスレッド処理を直接記述しなくてすむよう、安全性・利便性の高い抽象化レイヤを提供します(例:Go言語のgoroutineとchannel、Rust言語の Rayonライブラリ)。し

    マルチスレッド・プログラミングの道具箱
  • 1