タグ

abtestとbanditに関するmuddydixonのブックマーク (2)

  • バンディットアルゴリズム入門と実践

    39. 実際の使用イメージ 試行数 アーム1期待値 アーム2期待値 アーム3期待値 活用or探索 0(0/0) 0(0/0) 1 1(1/1) 0(0/0) 2 1(1/1) 0(0/1) 3 1(1/1) 0(0/1) 4 1(2/2) 0(0/1) 5 1(2/2) 0.5(1/2) 6 1(2/2) 0.5(1/2) 7 8 0.66(2/3) 0.5(1/2) 9 0.5(2/4) 0.5(1/2) 10 0.4(2/5) 0.5(1/2) 0(0/0) 0(0/0) 0(0/0) 0(0/1) 0(0/0) 0(0/0) 0(0/2) 0(0/2) 0(0/2) 0(0/2) ・・・最も期待値の高いアーム 39 探索 探索 探索 探索 探索 探索 活用 活用 活用 活用 ランダム選択 引くアーム 結果 1 2 3 1 2 3 - アーム1 アーム2 アーム3 アーム1 アーム2

    バンディットアルゴリズム入門と実践
  • 多腕バンディット テスト - アナリティクス ヘルプ

    Google アナリティクス ウェブテストの基盤を成す統計手法について説明します。Google アナリティクスでは、ウェブテストの手法として多腕バンディット方式を採用しています。多腕バンディット テストには、次のような特徴があります。 最も利益の大きい選択肢の特定を目標とする ランダム分布がテストの進行とともに更新される 「多腕バンディット(multi-armed bandit)」という名前は、それぞれに異なる見込み配当率が設定された、「One-armed bandit(片腕の盗賊)」というスロット マシンが複数並んでいる状況を模した仮説テストという意味を持っています。スロット マシンのプレイヤーは、最も見込み配当率が高いスロット マシンを見つけ出す必要がある一方で、利益を最大化する必要もあります。この状況では、これまでの配当率が最も優れているマシンのみをプレイするか、それともさらに配当率

  • 1