DeepLearningに関するnedokunのブックマーク (10)

  • RasPiとディープラーニングで我が家のトイレ問題を解決する - Qiita

    おしっこセンサーできました ウチの小学生の息子が家のトイレでたびたびおしっこをこぼしてしまう。俺がくどくど注意してもあんまり効果ない。そこで、代わりにAIに怒ってもらうことにした。こんな感じである。 おしっこセンサーのデモ([動画](https://www.youtube.com/watch?v=ktSukhHdogM))。水を数滴床にたらすとブザーが鳴り、床を拭くと止まる。 ディープラーニングの画像認識を使い、床の上に落ちた水滴をカメラで検出してブザーが鳴る仕組みだ。夏休みの自由工作に過ぎないので精度は期待していなかったけど、意外にきちんと動いてくれて、カメラに映る範囲に水滴を数滴たらすとピッピと鳴り、床を拭くとブザーも止まる。「お父さんだってAIくらい作れるぞ」と息子に自慢したいがための工作なのだ。 でも、これ作るのはそんなに難しくなくて、休み中の3日くらいで完成した。かかったお金は、

    RasPiとディープラーニングで我が家のトイレ問題を解決する - Qiita
  • 誤差逆伝播法における行列演算まとめ - Qiita

    1. はじめに 誤差逆伝播法とは,ニューラルネットワークのパラメータ学習手法の1つです.考え方がシンプルであり,かつ優れた解説記事がたくさんあるので,個々のパラメータの更新式を理解するのは難しくありません.しかし,複数のパラメータをまとめて更新する場合,転置,行列積,およびアダマール積の入り混じった行列地獄にハマります.少なくとも私はハマりました. 記事では,誤差逆伝播法自体の説明には立ち入らず,誤差逆伝播法を行列としてどう実装するか(どんなカタチなのか)をまとめます.勉強中の身ですので,誤り等があればご指摘頂けると幸いです. 2. モデル 記事では,下図のような多層パーセプトロンの教師あり学習を想定します. $\mathbf{x} = \{ x_{i} \}$は入力ノード,$\mathbf{h} = \{ h_{j} \}$は隠れノード,$\mathbf{y} = \{ y_{k}

    誤差逆伝播法における行列演算まとめ - Qiita
  • https://pondad.net/ai/2017/01/03/keras-cnn-1.html

  • numpyだけでCNN実装 - Qiita

    はじめに pythonCNNを実装しました. 深層学習ライブラリは使用せず,numpyだけで実装しました. 教科書として『深層学習』を使いました. 記事の構成 はじめに CNN 畳込み層 プーリング層 学習 重みの更新 誤差逆伝播 pythonでの実装 畳込み層の実装 プーリング層の実装 MNISTデータセットでの実験 学習 結果 おわりに CNN CNNとは,畳込み演算を用いた順伝播型ネットワークであり,主に画像認識に応用されています. 一般的なニューラルネットワークは,隣接層のユニットが全結合されたものですが, CNNは,隣接層間の特定のユニットのみが結合した特別な層を持ちます. これらの特殊な層では,畳込み および プーリング という演算を行います. 以下では,畳込みとプーリングについて説明します. 畳込み層 畳込みは,画像にフィルタの対応する画素同士の積をとり,その総和をとる演

    numpyだけでCNN実装 - Qiita
  • 畳み込みニューラルネットワークの仕組み | POSTD

    (編注:2016/11/17、記事を修正いたしました。) ディープラーニングの分野でテクノロジの進化が続いているということが話題になる場合、十中八九畳み込みニューラルネットワークが関係しています。畳み込みニューラルネットワークはCNN(Convolutional Neural Network)またはConvNetとも呼ばれ、ディープニューラルネットワークの分野の主力となっています。CNNは画像を複数のカテゴリに分類するよう学習しており、その分類能力は人間を上回ることもあります。大言壮語のうたい文句を実現している方法が当にあるとすれば、それはCNNでしょう。 CNNの非常に大きな長所として、理解しやすいことが挙げられます。少なくとも幾つかの基的な部分にブレークダウンして学べば、それを実感できるでしょう。というわけで、これから一通り説明します。また、画像処理についてこの記事よりも詳細に説明

    畳み込みニューラルネットワークの仕組み | POSTD
  • オートエンコーダ:抽象的な特徴を自己学習するディープラーニングの人気者

    オートエンコーダ(自己符号化器)とは何か オートエンコーダ(AutoEncoder) ニューラルネットワークの歴史 誤差逆伝播での勾配消失を防ぐ オートエンコーダは大成功だったか 生成モデルとオートエンコーダ Variational Autoencoder まとめ ディープラーニングが盛んに研究され、実用化されはじめている。Google認識やAlphaGoがプロの囲碁棋士イ・セドル氏を打ち負かしたことは大きな話題を呼んだ。GoogleのプロダクトでもレコメンドやGoogle Photoの画像認識など、その役割は凄まじいものがある。 ディープラーニングの幕開けは2006年にHinton氏がDeep AutoEncoderやDeep Belief Networkを提案してからだと言われている。 また、ディープラーニングの紹介のされ方でよくあるのが ディープラーニングを使うことで、コンピュー

    オートエンコーダ:抽象的な特徴を自己学習するディープラーニングの人気者
  • DQNをKerasとTensorFlowとOpenAI Gymで実装する

    はじめに 少し時代遅れかもしれませんが、強化学習の手法のひとつであるDQNをDeepMindの論文Mnih et al., 2015, Human-level control through deep reinforcement learningを参考にしながら、KerasとTensorFlowとOpenAI Gymを使って実装します。 前半では軽くDQNのおさらいをしますが、少しの強化学習の知識を持っていることを前提にしています。 すでにいくつか良記事が出ているので紹介したいと思います。合わせて読むと理解の助けになると思うので、是非参考にしてみてください。 DQNの生い立ち + Deep Q-NetworkをChainerで書いた DQNが生まれた背景について説明してくれています。Chainerでの実装もあるそうです。 ゼロからDeepまで学ぶ強化学習 タイトルの通り、ゼロからDeepま

    DQNをKerasとTensorFlowとOpenAI Gymで実装する
  • 【Darknet】リアルタイムオブジェクト認識 YOLOをTensorflowで試す - Qiita

    ちなみに僕の実行環境ではGPUは使えないためCPU版で行なっていきます。 #リアルタイムオブジェクト認識YOLO ###モデルダウンロード Darknetのインストールが完了したら早速YOLOを使ってみましょう。 まずは学習済みのモデル(.weights)ファイル(258 MB)をダウンロードします。 またはターミナルから以下を実行してもokです。 wget http://pjreddie.com/media/files/yolo.weights ###実行 ./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg モデルをダウンロードし、上記の実行コマンドを入力するとpredictions.pngという画像が生成されオブジェクト認識されていることがわかります。 #TensorflowでYOLO Darknetのチュートリアルが終わった

    【Darknet】リアルタイムオブジェクト認識 YOLOをTensorflowで試す - Qiita
  • Webカメラ使ってreal timeにdetectionしてみる - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

    Webカメラ使ってreal timeにdetectionしてみる - Qiita
  • YOLO: Real-Time Object Detection

    How It Works Prior detection systems repurpose classifiers or localizers to perform detection. They apply the model to an image at multiple locations and scales. High scoring regions of the image are considered detections. We use a totally different approach. We apply a single neural network to the full image. This network divides the image into regions and predicts bounding boxes and probabilitie

    YOLO: Real-Time Object Detection
  • 1