タグ

2008年11月7日のブックマーク (3件)

  • Mersenne Twister in JAVA

    Mersenne Twister in JAVA B. Narasimhan kindly wrote a Java version. See his programs. A quicker Java class for MT is installed by Sean Luke, see his Evolutionary Computation Project. A Java implementation of MT is included in Luc Maisonobe's mantissa package, mathematical algorithms for numerical tasks in space system applications. You can see a Java implementation of MT in the site The Colt Distr

  • 良い乱数・悪い乱数

    C言語標準ライブラリの乱数rand( )は質に問題があり、禁止している学会もある。 他にも乱数には様々なアルゴリズムがあるが、多くのものが問題を持っている。 最も多くの人に使われている乱数であろう Visual Basic の Rnd の質は最低である。 そもそも乱数とは 乱数とは、来サイコロを振って出る目から得られるような数を意味する。 このような乱数は予測不能なものである。 しかし、計算機を使って乱数を発生させた場合、 次に出る数は完全に決まっているので、予測不能とはいえない。 そこで、計算機で作り出される乱数を疑似乱数(PRNG)と呼び区別することがある。 ここでは、特にことわらない限り乱数とは疑似乱数のことを指すとする。 計算機でソフト的に乱数を発生させることの最大のメリットは、 再現性があることである。 初期状態が同じであれば、発生する乱数も全く同じものが得られる。 このことは

  • 多項式時間素数判定アルゴリズム

    AKSアルゴリズムと PRIMES is in Pに関する解説のページです 以下の説明は、元論文を参照しながらお読みください。 元論分のサイト:Manindra Agrawal, Neeraj Kayal and Nitin Saxena, PRIMES is in P, the original version of the paper. アルゴリズムの基となるアイデア アルゴリズムの概要 AKS アルゴリズム 使用する用語と記号 アルゴリズムの動作概要 アルゴリズムの正当性の証明概要 アルゴリズムの正当性の証明の蛇足説明 アルゴリズムの正当性の証明詳細のための準備 PRIMES is in P セクション3の解説 Lemma 3.1. Lemma 3.1.(fact 1) Lemma 3.1.(fact 2) Lemma 3.1.(fact 3) Lemma 3.1.(fact 4