タグ

ブックマーク / zellij.hatenablog.com (5)

  • 一般逆行列・ムーア・ペンローズ逆行列 - 大人になってからの再学習

    連立方程式を解くために、行列の逆行列が用いられる。 簡単な例として で表されるxとyの関係を行列を使って表せば次のようになる。 ここで , , とすると、最初の式は という線形代数でおなじみの式で表されるから、 両辺にの逆行列をかけて として解が求まる。 つまり、行列Aの逆行列を求めれば解を求めることができる。 今回の例だと、 なので、 となって、 が求まる。 これはグラフに表すと、次のようになって、つまりの二つの直線の交点を求めたことになる。 さて、このように、きれいに連立方程式が解ける場合はいいけど、 現実問題として解が求まらないことは多くある。 ===== ■ 例1) 式が多すぎて解が存在しない。 このような3つの式を満たす解は存在しない。 グラフに表すと次のような感じ。 3つの直線は1つの点で交わらないため、解が無いことがわかる。 ■ 例2) 式が少なすぎて解が1つに定まらない。

  • 勉強に役立ちそうなエントリの一覧 - 大人になってからの再学習

    このブログでカバーされている「勉強に役立ちそうなエントリ」の一覧です。 ★をつけたものは、書くときに頑張ったような気がするので、見て損は無いと思う。というもの。 ■ 理工系の大学学部生くらいを対象とした用語の説明 ・★ベクトルの内積とは - 大人になってからの再学習 ・★固有ベクトル・固有値 - 大人になってからの再学習 ・★log(1+x)のテイラー展開・マクローリン展開 - 大人になってからの再学習 ・★写像:単射、全射、全単射 - 大人になってからの再学習 ・★フーリエ変換 - 大人になってからの再学習 ・★フーリエ級数展開の式を理解する - 大人になってからの再学習 ・★フーリエ級数展開の式を理解する(2) - 大人になってからの再学習 ・★プログラミングで理解する反射律・対称律・推移律・反対称律 - 大人になってからの再学習 ・★群・環・体 - 大人になってからの再学習 ・★分散

    勉強に役立ちそうなエントリの一覧 - 大人になってからの再学習
  • 2つのボールをぶつけると円周率がわかる - 大人になってからの再学習

    一か月ほど前に New York Times で紹介されていた記事。 The Pi Machine - NYTimes.com ここで紹介されているのは、なんと驚くべきことに、2つのボールをぶつけるだけで円周率(3.1415...)の値がわかる、という内容。 これだけだと、全然ピンとこないと思うので、もう少し詳しく説明すると、次のようなことが書かれている。 ↓2つのボールを、下の図ように壁と床のある空間に置く。 ↓その後、壁から遠い方のボールを、他方に向かって転がす。 後は、ボールが衝突する回数をカウントするだけで、円周率がわかるらしい。 これでも、なんだかよくわからない。 まず2つのボールが同じ質量である場合を考えてみよう。 まず、手前のボールが他方のボールにぶつかる(これが1回め)。 続いて、ぶつかったボールが移動して壁にぶつかる(これが2回め)。 壁にぶつかったボールが跳ね返ってきて

    2つのボールをぶつけると円周率がわかる - 大人になってからの再学習
  • Wikipediaがわかりにくいので(数学とか)、わかりやすいサイトを作ってみた - 大人になってからの再学習

    このブログをはじめてから2年8か月と少し(ちょうど1000日くらい)が経った。 これまでに公開したエントリの数は299。 つまり、このエントリは記念すべき第300号!というわけ。 ブログとしてある程度の存在を認められるには300記事が1つの目安であるという説があるので[要出典]、 この300回目のエントリは当ブログにとって大きな節目と言える。 前回299号のエントリでは「なぜWikioediaはわかりにくいのか(数学とか)」という内容を書いた。 そこで言いたかったことを3行でまとめると次の通り。 ■ Wikipediaの説明は理工系の初学者にはわかりにくいね。 ■ そもそも説明のアプローチ(思想とも言う)が違うので、わかりにくくて当然だね。 ■ もっとわかりやすい説明の仕方がありそうだね。特に図を使った説明は直観的な理解を助ける力があるね。 まぁ、だいたいこんな感じ。 そして、その記事につ

    Wikipediaがわかりにくいので(数学とか)、わかりやすいサイトを作ってみた - 大人になってからの再学習
  • なぜWikipediaの説明はわかりにくいのか(数学とか) - 大人になってからの再学習

    調べ物をするときにWikipediaの存在は絶大だ。どんな些細なものに対しても詳しい説明が載っている。 だけど、数学、物理などの理工系の教科書に登場するキーワードについては、Wikipediaの説明はほとんど役に立たない。 具体例をいくつか。 ■ フーリエ変換 数学においてフーリエ変換(フーリエへんかん、英語: Fourier transform; FT)は実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 (frequency domain representation) と呼ばれる。・・ http://ja.wikipedia.org/wiki/%E3%83%95%E3%83%BC%E3%83%AA%E3%82%A8%E5%A4%89%E6%8F%9B ■ NP困難 NP困難(-こんなん、N

    なぜWikipediaの説明はわかりにくいのか(数学とか) - 大人になってからの再学習
  • 1