タグ

数学に関するosamtimizerのブックマーク (5)

  • フーリエ変換の本質

    工学系の大学生なら、2回生ぐらいで習うフーリエ変換。フーリエ級数やらフーリエ展開やらの式だけ覚えさせられて、フーリエ変換の意味を理解してない人が多いようです。 そこで、フーリエ変換とは何か?をサクっと説明してみましょう。 全ての信号は、上図のようにsin波の足しあわせで表現することが出来ます。 具体的には、周波数が1のsinxと周波数が2のsin2xと周波数が3のsin3xと・・・周波数がnのsinnxを足し合わせることで、あらゆる信号を表現することが出来るのです。 しかし、ただ単にy=sinx+sin2x+sin3x+・・・としたのでは1種類の信号しか表現できません。そこで、各周波数の振幅を変化させることで、あらゆる信号を表現するのです。 上記の信号の場合、y=4*sinx+0.5*sin2x+2*sin3x+sin4xと表現できます。 さて、先程の図を用いて、周波数を横軸に、振幅の大き

  • グラフィック・パターンの扱い (5) サンプル補間

    行列は、行と列を()で囲んで表現しますが、このドキュメント内では以下のように表現するようにします。 | 3, 2, 1 | | 4, 9, 7 | | 6, 8, 5 | 各行を'|'で囲ったベクトルで表現する形になります(上の例は 3 x 3の行列を表しています)。 また、行ベクトルは通常どおり(3,2,1)のように表現しますが、列ベクトルは縦長になるため、転置行列の記号Tを使って(3,2,1)Tと表現する場合があります。 あらかじめ、御了承ください。 1) 任意の比率での拡大・縮小処理 パターンを任意の比率で縮小するような場合は、パターン上のピクセルを選んで単純にプロットするのではなく、周りのピクセルの色を合成させてプロットすることで画質を向上させることができます。簡単な例をあげると、あるパターンを縦横半分に縮小するのであれば、パターンの左上から 2 x 2 の範囲のピクセルを取って

  • Wikipediaがわかりにくいので(数学とか)、わかりやすいサイトを作ってみた - 大人になってからの再学習

    このブログをはじめてから2年8か月と少し(ちょうど1000日くらい)が経った。 これまでに公開したエントリの数は299。 つまり、このエントリは記念すべき第300号!というわけ。 ブログとしてある程度の存在を認められるには300記事が1つの目安であるという説があるので[要出典]、 この300回目のエントリは当ブログにとって大きな節目と言える。 前回299号のエントリでは「なぜWikioediaはわかりにくいのか(数学とか)」という内容を書いた。 そこで言いたかったことを3行でまとめると次の通り。 ■ Wikipediaの説明は理工系の初学者にはわかりにくいね。 ■ そもそも説明のアプローチ(思想とも言う)が違うので、わかりにくくて当然だね。 ■ もっとわかりやすい説明の仕方がありそうだね。特に図を使った説明は直観的な理解を助ける力があるね。 まぁ、だいたいこんな感じ。 そして、その記事につ

    Wikipediaがわかりにくいので(数学とか)、わかりやすいサイトを作ってみた - 大人になってからの再学習
  • 統計学を勉強するときに知っておきたい7つのポイント

    マイクロソフト社が技術分野でもっと熱い専攻の一つとして分析/統計をあげている(Microsoft JobsBlog)。同社以外でも統計学は、今後最も有益なスキルの一つだと考えているようだ(NYT - For Today’s Graduate, Just One Word: Statistics)。しかし、データマイニングの話も一般化しつつあって学習ノウハウなども公開されているが、経験にあわない部分が多い。統計学を初めて勉強するときに知っておいた方が良い7つのポイントをあげてみた。 1. 学習機会やテキストは山のようにあるので利用する 確率・統計の日語テキストは山のようにあり、大学のコースワークを振り返っても、理文問わずにほとんどの学部で確率・統計はあったはずだ。大学院のコースワークでは英語の文献を好む傾向があるが、上級テキストでも日語のものも少なくない。また「マンガでわかる統計学」のよ

    統計学を勉強するときに知っておきたい7つのポイント
  • サービス終了のお知らせ

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。

  • 1