ディープラーニングのビジネスへの活用の可能性を探る。初回はディープラーニングの登場がどんな意味で大事件だったのかを解説する。 機械学習、ニューラルネット、ディープラーニングといった言葉の意味を整理することから始めよう。機械学習は人工知能の一分野で、データの背景にある傾向や法則を探り、現象の解析や予測をすることを目標としている。人間がルールを明示的に与えるのではなく、データから機械自身に法則を学習させるのが特徴だ。ルールで記述しきれない複雑な現象や、季節や時間などで傾向が変わる現象の解析に強みを発揮する。 ニューラルネットは機械学習で扱われる計算アルゴリズムの1つである。脳を模倣したモデルで、入力層、隠れ層、出力層の3種類の層から成る。入力に対して単純な変換を何回も繰り返し、予測結果などを出力する構造をしている。 深い構造、すなわち隠れ層を何層も重ねる構造がニューラルネットの精度向上の鍵とな