ブックマーク / ja.wikipedia.org (6)

  • ヌメロニム - Wikipedia

    1985年、DECの技術者である Jan Scherpenhuizen が自分の電子メールアドレスの作成をシステム管理者に依頼したところ S12n というアカウントを得たという。この表現方法を気に入った人が社内に広め、 i18n などの略語が誕生していったとされる[1]。 a11y - Accessibility(利用しやすさ)[2] c14n - Canonicalization(正準,正規化)[3] d11n - Documentation(文書化)[4] G11n - Globalisation / Globalization(世界化)[5][6] i18n - Internationalisation / Internationalization(国際化)[1][5][6] i14y - Interoperability(相互運用性)[7] K8s - Kubernetes L1

    pi8027
    pi8027 2010/07/09
    名前忘れるのでブクマ
  • 2相コミット - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "2相コミット" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2015年10月) 2相コミット(Two-Phase Commit)とは、コンピュータネットワークやデータベースにおいて、分散システム内の全ノードがトランザクションのコミットに合意するための分散アルゴリズムあるいはプロトコルである。ネットワーク障害やノード故障の場合も考慮され、結果としてトランザクションはコミットが成功するか失敗するかのいずれかの状態となる。しかし、Dale Skeen とマイケル・ストーンブレーカーの研究によれば、2相コミットは同時に複数のサイトが(無作為に)

  • ブースの乗算アルゴリズム - Wikipedia

    ブースの乗算アルゴリズム(ブースのじょうざんアルゴリズム)は、2の補数表現のふたつの符号付整数の乗算の手法である。 このアルゴリズムは1950年ごろアンドリュー・ドナルド・ブース(英語版)がロンドン大学バークベック・カレッジで結晶学を研究しているときに発明したものである。ブースは卓上計算機を使って研究していて、計算速度を向上させるために乗算を高速化する方法を探していてこれを発明した。彼の時代のマシンではシフトは加算よりも高速であり、ある種の数値では彼のアルゴリズムは高速であった。しかも負数についてもこのアルゴリズムは機能した。ブースのアルゴリズムはコンピュータ・アーキテクチャの研究において興味深い。 アルゴリズム[編集] ブースのアルゴリズムは、符号付きの2の補数表現のNビットの乗数 Y において、最下位ビットよりさらに下に y-1 = 0 というビットを暗黙のうちに補って隣接する2つのビ

  • アムダールの法則 - Wikipedia

    複数のプロセッサを使って並列計算してプログラムの高速化を図る場合、そのプログラムの逐次的部分は、制限を受ける。例えば、仮にプログラムの95%を並列化できたとしても、残りの部分である5%は並列処理ができないため、どれだけプロセッサ数を増やしたとしても、図で示したように20倍以上には高速化しない。 アムダールの法則(アムダールのほうそく、英語: Amdahl's law)は、ある計算機システムとその対象とする計算についてのモデルにおいて、その計算機の並列度を上げた場合に、並列化できない部分の存在、特にその割合が「ボトルネック」となることを示した法則である。コンピュータ・アーキテクトのジーン・アムダールが主張したものであり、アムダールの主張(アムダールのしゅちょう、英語: Amdahl's argument)という呼称もある[1]。 複数のプロセッサを使い並列計算によってプログラムの高速化を図る

    アムダールの法則 - Wikipedia
  • マージソート - Wikipedia

    マージソートの様子 マージソートは、ソートのアルゴリズムで、既に整列してある複数個の列を1個の列にマージする際に、小さいものから先に新しい列に並べれば、新しい列も整列されている、というボトムアップの分割統治法による。大きい列を多数の列に分割し、そのそれぞれをマージする作業は並列化できる。 n個のデータを含む配列をソートする場合、最悪計算量O(n log n)である。分割と統合の実装にもよるが、一般に安定なソートを実装できる。インプレースな(すなわち入力の記憶領域を出力にも使うので、追加の作業記憶領域を必要としない)バリエーションも提案されているが、一般には、O(n)の追加の作業記憶領域を必要とする[1]。 (ナイーブな)クイックソートと比べると、最悪計算量は少ない[1]。ランダムなデータでは通常、クイックソートのほうが速い。 1945年、フォン・ノイマンによって考案された[2]。 アルゴリ

    マージソート - Wikipedia
    pi8027
    pi8027 2009/02/19
    安定ソートの一種。クイックソートと同様、分割統治法を使用する。O(n)の外部記憶領域を必要とする。
  • イントロソート - Wikipedia

    イントロソート(英: introsort)は、David Musser(英語版) が1997年に設計した、クイックソートとヒープソートを組み合わせたソートアルゴリズムである。 最初はクイックソートを行い、再帰のレベルがソートされた要素数(の対数)を超えるとヒープソートに切り替える。時間計算量は最悪でも O(n log n) であり、同時に典型的なデータに対するソートではクイックソートに匹敵する性能を示す。 イントロソートは、クイックソートやヒープソートと同様、比較ソートである。 クイックソートは、性能がピボット(データ列を分割する境界値)の選択に強く依存するという欠点があった。 例えばデータ列の先頭や最後尾をピボットに選ぶと、ほぼソートされた入力について最悪の性能を示す。 ニクラウス・ヴィルトはこれを避けるため、データ列の中央の要素をピボットに選ぶようにしたが、工夫をこらした並びに対しては

    pi8027
    pi8027 2009/02/15
    データ数に応じてアルゴリズムを切り替えるソートアルゴリズム。
  • 1