タグ

論理に関するpneumasterのブックマーク (2)

  • 様相論理 - Wikipedia

    様相論理(ようそうろんり、英: modal logic)は、いわゆる古典論理の対象でない、様相(modal)と呼ばれる「〜は必然的に真」や「〜は可能である」といった必然性や可能性などを扱う論理である(様相論理は、部分の真理値からは全体の真理値が決定されない内包論理の一種と見ることができる)。 その歴史は古くアリストテレスまで遡ることができる[1]:138が、形式的な扱いは数理論理学以降、非古典論理としてである。 様相論理では一般に、標準的な論理体系に「~は必然的である」ことを意味する必然性演算子と、「~は可能である」ことを意味する可能性演算子のふたつの演算子が追加される。 様相論理は真理論的(形而上学的、論理的)様相の文脈で語られることが最も多い。この様相においては「~は必然的である」、「~は可能である」といった言明が扱われるが、これは認識論的様相と混同されやすい。 例えば「雪男は存在して

    pneumaster
    pneumaster 2008/04/05
    ~しなければならないの否定は,~しなくてもよい 命題を,可能性演算子や必然性演算子を使って表す
  • 否定 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "否定" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2023年12月) 数理論理学において否定 (ひてい、英: Negation) とは、命題の真と偽を反転する論理演算である。否定は英語で Not であるが、Invert とも言われ論理演算ではインバージョン(Inversion)、論理回路では Not回路やインバータ回路(Inverter)とも呼ばれ入力に対して出力が反転する。 命題 P に対する否定を ¬P, P, !P などと書いて、「P でない」とか「P の否定」、「P 以外の場合」などと読む。このような形をした命題を否定命題

    否定 - Wikipedia
    pneumaster
    pneumaster 2008/04/05
    否定 not ! しなければならないの否定はしなくてもよい 様相論理学
  • 1