A version of this article appears in the IEEE Robotics & Automation Magazine (Volume 26, Issue 1, March 2019). In mid-November, we received the sad news that Alphabet is closing SCHAFT, a spinoff of the University of Tokyo robotics lab. The decision comes one year after Boston Dynamics was sold to SoftBank, the company that also acquired Aldebaran Robotics (known for the Pepper and Nao robots). Du
Humanoid robots have a very distinctive walk. Knees bent, torso as stationary as possible. Even Boston Dynamics’ own Atlas uses this crouching sort of squat-walk to get around, because those perpetually bent legs are how it keeps from falling over. This sort of gait is so common with humanoid robots that it’s become the “normal” robot gait, but it’s also not at all the way that humans walk. We wal
Quantum computing could someday supercharge artificial intelligence, accelerate drug discovery, and even reduce traffic jams. But existing quantum computers, which have only a modest, if any, advantage over their classical brethren, are expensive, finicky beasts. Even if you could afford the US $15 million to buy a D-Wave 2000Q quantum annealer [PDF], for example, you would need experts to maintai
Video: Carl Bugeja I started out by just wanting to make a very small drone. But I quickly realized that there was a limiting factor in just how small and light I could make any design: the motors. Even small motors are still discrete packages that have to be attached to all the other electronic and structural elements. So I began wondering if there was a way to merge these elements and save some
The DARPA Robotics Challenge was a showcase for how very large, very expensive robots could potentially be useful in disaster recovery and high-risk environments. Humanoids are particularly capable in some very specific situations, but the rest of the time, they’re probably overkill, and using smaller, cheaper, more specialized robots is much more efficient. This is especially true when you’re con
Light detection and ranging, or lidar, is a sensing technology based on laser light. It's similar to radar, but can have a higher resolution, since the wavelength of light is about 100,000 times smaller than radio wavelengths. For robots, this is very important: Since radar cannot accurately image small features, a robot equipped with only a radar module would have a hard time grasping a complex o
Quantum computers have long held the promise of performing certain calculations that are impossible—or at least, entirely impractical—for even the most powerful conventional computers to perform. Now, researchers at a Google laboratory in Goleta, Calif., may finally be on the cusp of proving it, using the same kinds of quantum bits, or qubits, that one day could make up large-scale quantum machine
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く