並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 3 件 / 3件

新着順 人気順

有理数とは 例の検索結果1 - 3 件 / 3件

  • リレーショナル・データベースの世界

    序文 私の仕事は、DBエンジニアです。といっても別に望んでデータベースの世界へきたわけではなく、当初、私はこの分野が面白くありませんでした。「Web系は花形、データベースは日陰」という言葉も囁かれていました。今でも囁かれているかもしれません。 ですが、しばらくデータベースを触っているうちに、私はこの世界にとても興味深いテーマが多くあることを知りました。なぜもっと早く気づかなかったのか、後悔することしきりです。 もちろん、自分の不明が最大の原因ですが、この世界に足を踏み入れた当時、先生も、導きの書となる入門書もなかったことも事実です。 今でこそバイブルと仰ぐ『プログラマのためのSQL 第2版』も新入社員には敷居が高すぎました (2015年2月追記:その後、自分で第4版を訳出できたのだから、 人生は何があるか分からないものです)。 そこで、です。このサイトの目的は、データベースの世界に足を踏み

    • クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog

      ---【追記:2022-04-01】--- 「基礎線形代数講座」のPDFファイルをこの記事から直接閲覧、ダウンロードできるようにしました。記事内後半の「公開先」に追記してあります。 --- 【追記ここまで】--- みなさん、はじめまして。技術本部 開発技術部のYです。 ひさびさの技術ブログ記事ですが、タイトルからお察しの通り、今回は数学のお話です。 #数学かよ って思った方、ごめんなさい(苦笑) 数学の勉強会 弊社では昨年、有志による隔週での数学の勉強会を行いました。ご多分に漏れず、コロナ禍の影響で会議室に集合しての勉強会は中断、再開の目処も立たず諸々の事情により残念ながら中止となり、用意した資料の配布および各自の自学ということになりました。 勉強会の内容は、高校数学の超駆け足での復習から始めて、主に大学初年度で学ぶ線形代数の基礎の学び直し 、および応用としての3次元回転の表現の基礎の理解

        クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog
      • 基礎線形代数講座

        4. 公開にあたって ●まえがきに代えて 本書は 株式会社 セガ にて行われた有志による勉強会用に用意された資料を一般に公開するもので す。勉強会の趣旨は いわゆる「大人の学び直し」であり、本書の場合は高校数学の超駆け足での復習 から始めて主に大学初年度で学ぶ線形代数の基礎の学び直し、および応用としての3次元回転の表現の 基礎の理解が目的となっています。広く知られていますように線形代数は微積分と並び理工系諸分野の 基礎となっており、だからこそ大学初年度において学ぶわけですが、大変残念なことに高校数学では微 積分と異なりベクトルや行列はどんどん隅に追いやられているのが実情です。 線形代数とは何かをひとことで言えば「線形(比例関係)な性質をもつ対象を代数の力で読み解く」 という体系であり、その最大の特徴は原理的に「解ける」ということにあります。現実の世界で起きて いる現象を表す方程式が線形な振

          基礎線形代数講座
        1