並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 3221件

新着順 人気順

mathの検索結果1 - 40 件 / 3221件

mathに関するエントリは3221件あります。 学習統計プログラミング などが関連タグです。 人気エントリには 『150 分で学ぶ高校数学の基礎』などがあります。
  • 150 分で学ぶ高校数学の基礎

    [重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修正は 1 週間後となります. [目次] 第1章 数学の基礎知識(p.5~) 第2章 場合の数(p.31~) 第3章 確率と期待値(p.56~) 第4章 統計的な解析(p.69~) 第5章 いろいろな関数(p.103~) 第6章 三角比と三角関数(p.141~) 第7章 証明のやり方(p.160~) 第8章 ベクトル(p.187~) 第9章 微分法と積分法(p.205~) 第10章 その他のトピック(p.240~) スライドのまとめ(p.254~)

      150 分で学ぶ高校数学の基礎
    • コグニカル

      コグニカルは、ツリー構造で知識が整理された学習サイトです。

      • 京都大学、Pythonの基本を解説した無料の教科書「素晴らしすぎる」「非常にわかりやすくて良い」 | Ledge.ai

        Top > ラーニング > 京都大学、Pythonの基本を解説した無料の教科書「素晴らしすぎる」「非常にわかりやすくて良い」

          京都大学、Pythonの基本を解説した無料の教科書「素晴らしすぎる」「非常にわかりやすくて良い」 | Ledge.ai
        • 【転職エントリ】Googleに入社します|Lillian

          はじめに この記事には、Googleのオンサイト面接に向けて勉強した内容が記載されていますが、それらはすべて面接を受ける直前に書いておいたものです。このエントリを読むことで面接で聞かれた内容が予測されてしまわないようにそのようにさせていただきました。ご了承お願いします。 この記事について 令和元年に医師を退職し、ソフトウェアエンジニアに転職します。 自分にとって大きな転機であったのと、とても大変な道のりであったので、私という人間が辿った道筋を最初から最後までちゃんとまとめておきたいと思いこの記事を書くことにしました。 私のような他業種から未経験での転職を目指されている方にとっても、何らかの参考になる内容であれば幸いです。 私の生い立ち 私は小さい頃からテレビゲームが大好きで、学校から帰るとずっと家でゲームをしている子でした。あまりにもゲームが好きだったので、遊ぶだけではなく自分で作ってみた

            【転職エントリ】Googleに入社します|Lillian
          • 東大が無料公開している超良質なPython/Data Science/Cloud教材まとめ (*随時更新) - Digital, digital and digital

            東京大学がちょっとびっくりするくらいの超良質な教材を無料公開していたので、まとめました Python入門講座 東大のPython入門が無料公開されています。scikit-learnといった機械学習関連についても説明されています。ホントいいです Pythonプログラミング入門 東京大学 数理・情報教育研究センター: utokyo-ipp.github.io 東大のPython本も非常にオススメです Pythonによるプログラミング入門 東京大学教養学部テキスト: アルゴリズムと情報科学の基礎を学ぶ https://amzn.to/2oSw4ws Pythonプログラミング入門 - 東京大学 数理・情報教育研究センター Google Colabで学習出来るようになっています。練習問題も豊富です https://colab.research.google.com/github/utokyo-ip

              東大が無料公開している超良質なPython/Data Science/Cloud教材まとめ (*随時更新) - Digital, digital and digital
            • 食べログ3.8問題を検証 - クイックノート

              先日、twitter上で食べログの星の数について、 ある問題が話題になりました。 食べログの闇として話題になったその問題とは、 「評価3.8以上は年会費を払わなければ3.6に下げられる」 というものです。 食べログは飲食店についての口コミを集めるサイトで、 その評価は実際のユーザーによって形成されるものとして広く認知されています。 専門的なグルメリポーターでもなく、 一般の人々の素直な感想を集めることで、 その飲食店のリアルな価値が知れると期待して、 利用しているユーザーも多いでしょう。 それだけに、 「食べログが評価を恣意的に操作しているかもしれない」という話は、 瞬く間にネットで話題となりました。 さて、この話は実際に行われていることなのでしょうか。 食べログでは、当然評価点は公開されているので、 このような恣意的な操作があれば、 何らかの形で偏りが見つかるはずです。 ということで、食

                食べログ3.8問題を検証 - クイックノート
              • 高校レベルの数学から大学の教養数学くらいまでを独学/学び直した - razokulover publog

                去年の12月頃から数学の学び直しを始めた。 職業柄少し専門的な、特に機械学習の方面の書籍などに手を出し始めると数式からは逃れられなかったりする。とはいえ元々自分は高校時代は文系で数学1A2Bまでしか履修していない。そのせいか少し数学へ苦手意識があり「図でわかるOO」とか「数学無しでもわかるOO」のような直感的に理解出来る解説に逃げることが多かった。実務上はそれで問題ないにしてもこのまま厳密な理解から逃げているのも良くないなと感じたのでもう少し先の数学に取り掛かることにした。 巷には数学の学び直しについての記事が既にたくさんある。それに自分の場合は何かの受験に成功した!とか難関の資格を取得した!というような華々しい結末を迎えている状態ではない。そんな中で自分が何か書いて誰の役にたつかもわからないが、少なくとも自分と似たようなバックグランドを持つ人には意味のある内容になるかもしれないので、どの

                  高校レベルの数学から大学の教養数学くらいまでを独学/学び直した - razokulover publog
                • 高等学校情報科「情報Ⅱ」教員研修用教材(本編):文部科学省

                  PDF形式のファイルを御覧いただく場合には、Adobe Acrobat Readerが必要な場合があります。 Adobe Acrobat Readerは開発元のWebページにて、無償でダウンロード可能です。

                    高等学校情報科「情報Ⅱ」教員研修用教材(本編):文部科学省
                  • 中日新聞:自動車工場のガロア体 QRコードはどう動くか

                    その誕生を地元新聞も経済新聞も記事にしなかった。2年後、『コードの情報を白黒の点の組み合わせに置き換える』と最下段のベタ記事で初めて紹介された時、その形を思い浮かべることができる読者はいなかった。いま、説明の必要すらない。QRコードはなぜ開発され、どう動くのだろうか。 QRコードは、自動車生産ラインの切実な要請と非自動車部門の技術者の「世界標準の発明をしたい」という野心の微妙な混交の下、1990年代前半の日本電装(現デンソー)で開発された。 トヨタグループの生産現場では、部品名と数量の記された物理的なカンバンが発注書、納品書として行き来することで在庫を管理する。そのデータ入力を自動化するバーコード(NDコード)を開発したのがデンソーだ。 バブル全盛の1990年ごろ、空前の生産台数、多様な車種・オプションに応えるため、部品も納入業者も急激に増え、NDコードが限界を迎えていた。63桁の数字しか

                    • よく心理戦で「相手は私の思考を読んでこうするから、それに対し私はこうする」みたいな読み合いがありますが、ずっと互いに読み合っていたら無限ループで切りが無いはずです。どこまで読むのが正解なのですか?

                      回答 (7件中の1件目) 自分が有利と思えるまで。ただ時間が決まっているはずなので51体49になったらつぎへいきましょ!

                        よく心理戦で「相手は私の思考を読んでこうするから、それに対し私はこうする」みたいな読み合いがありますが、ずっと互いに読み合っていたら無限ループで切りが無いはずです。どこまで読むのが正解なのですか?
                      • えるエル on Twitter: "東大が無償でPDF公開している,統計学会の75周年記念出版『21世紀の統計科学』の3冊 1と2は実際の統計データを用いて,各事例への統計学の応用手法,3は機械学習の人なら馴染み深い統計計算を解説 下手な市販の本を買うよりは,この3… https://t.co/w2cSVIxmUI"

                        東大が無償でPDF公開している,統計学会の75周年記念出版『21世紀の統計科学』の3冊 1と2は実際の統計データを用いて,各事例への統計学の応用手法,3は機械学習の人なら馴染み深い統計計算を解説 下手な市販の本を買うよりは,この3… https://t.co/w2cSVIxmUI

                          えるエル on Twitter: "東大が無償でPDF公開している,統計学会の75周年記念出版『21世紀の統計科学』の3冊 1と2は実際の統計データを用いて,各事例への統計学の応用手法,3は機械学習の人なら馴染み深い統計計算を解説 下手な市販の本を買うよりは,この3… https://t.co/w2cSVIxmUI"
                        • スーパーマリオのジャンプのアルゴリズム - Qiita

                          先日、気持ちのいいジャンプを目指してというQiitaの記事を見かけました。記事中では、マリオのジャンプについても触れられています。マリオというと、マリオブラザースやスーパーマリオブラザース等々、色々あるのですが、これはおそらくスーパーマリオブラザースの事だと思われます。ジャンプアクションゲームといったらスーマリですね。 そのマリオのジャンプの仕組みは「マリオの速度ベクトルを保存しておいて座標を計算するんじゃなくて~」と書かれていて、別サイトのブログへのリンクが張られています。 マリオのジャンプ実装法とVerlet積分 ただ、この記述については不正確であるという別のブログもあったりします。 マリオの完コピvol.28 ジャンプの解析と修正 ホントのところはどうなんでしょうか?世界で最も有名なゲームのジャンプがどのように処理されているのか気になったので調べてみることにしました。 原典にあたる

                            スーパーマリオのジャンプのアルゴリズム - Qiita
                          • 宗教的プログラムの構造と解釈 - 佐武原 | 少年ジャンプ+

                            JASRAC許諾第9009285055Y45038号 JASRAC許諾第9009285050Y45038号 JASRAC許諾第9009285049Y43128号 許諾番号 ID000002929 ABJマークは、この電子書店・電子書籍配信サービスが、著作権者からコンテンツ使用許諾を得た正規版配信サービスであることを示す登録商標(登録番号 第6091713号)です。

                              宗教的プログラムの構造と解釈 - 佐武原 | 少年ジャンプ+
                            • クリエイティブコーディングの教科書

                              ゲームエンジンや3Dソフトウェアを利用して高度な表現ができるこの時代でも、プリミティブな描画や動き、アルゴリズムから学べることは多い。それらをJavaScriptで書くクリエイティブコーディングという形で学べる手引書が本書となる。

                                クリエイティブコーディングの教科書
                              • GPT-3の衝撃 - ディープラーニングブログ

                                この1週間はGPT-3のユースケースの広さに驚かされる毎日でした. シリコンバレーでは話題騒然ですが日本ではほとんど話題になっていないので,勢いで書くことにしました. GPT-3はOpenAIが開発した言語生成モデルです.名前の由来であるGenerative Pretrained Transformerの通り,自然言語処理で広く使われるTransformerモデルを言語生成タスクで事前学習しています. 先月申請すれば誰でもGPT-3を利用できるOpenAI APIが発表され,様々な業種の開発者によって驚くべきデモンストレーションがいくつも公開されています. 特に話し言葉からJSXやReactのコードを生成するデモは著名なベンチャーキャピタルから注目を集め,誇大広告気味だと警鐘を鳴らす事態に発展しています. This is mind blowing. With GPT-3, I built

                                  GPT-3の衝撃 - ディープラーニングブログ
                                • 国際比較に使える唯一の指標「超過死亡」で明らかになる実態 - 新型コロナウイルス情報室 - Quora

                                  今回取り上げるのは、フィナンシャル・タイムズからの「死者数は報告されているよりも60%高い可能性がある」というレポートです。 Global coronavirus death toll could be 60% higher than reported | Free to read ここで、本論に入る前に、少し前置きです。 アウトブレイクが現在進行形で起きているときに、異なる国での政策の良し悪しを議論するのに使える、信頼できる統計データとは何でしょうか? 感染者数は、検査の性能・件数・方針などに強く依存するため、もっとも信頼性の低い指標です。一方、死亡者数は、相対的には信頼できる指標ですが、検査を受けないままに死亡してしまったケースについてはアンダーレポート(過小報告)となります。 特にいったん医療崩壊を起こしてしまうとあらゆる報告が追いつかなくなり、感染者数も死亡者数もきちんと管理できな

                                  • 和歌山県ホームページ Wakayama Prefecture Web Site

                                    知事からのメッセージを紹介します。 令和2年12月28日のメッセージ 新型コロナウイルス感染症対策(その47) ‐データの示す急所‐ コロナの感染は止まらず、日本全体では、連日史上最多の感染者数を更新しています。そうしますと医療も逼迫してきて、いくつかの県では医療崩壊かという懸念も高まっています。和歌山県では、県庁を中心とする保健医療部隊が獅子奮迅の働きで感染者が出ても早期に囲い込んでしまって、感染爆発させないようにしていますので、感染者も割合少なく、全員病院に入ってもらっていますが、病床の逼迫はありません。自分の部下が大部分ですから、言いにくいのですが、保健医療行政の健康局、各地の保健所、和歌山市の保健所、感染者を受け入れてくれている病院、早期発見に協力してくれている全てのクリニック、病院さらには、正面部隊が忙しくなったとき協力してくれている各機関の保健師、看護師、各行政機関の応援部隊、

                                    • 機械学習モデルを作成する - Training

                                      Microsoft Learn では、対話的な方法で、従来の機械学習の概要を理解することができます。 これらのラーニング パスは、ディープ ラーニングのトピックに移行するための優れた基盤にもなり、各自の生産性を向上させます。 最も基本的な従来の機械学習モデルから、探索的データ分析やカスタマイジングのアーキテクチャまで、ブラウザーを離れることなく、概念的内容や対話型の Jupyter Notebook を簡単に把握することができます。 知識と興味に応じて自分のパスを選択してください。 オプション 1: 完全なコース: 機械学習のためのデータ サイエンスの基礎 ほとんどのユーザーには、このパスがお勧めです。 これには、概念の理解を最大限に高めるカスタム フローを備えた、他の 2 つのラーニング パスと同じモジュールがすべて含まれています。 基になる概念と、最も一般的な機械学習ツールでモデルを構

                                        機械学習モデルを作成する - Training
                                      • 「1Byteが8bitに決まったワケ」についての長い話 まずは「バベッジの階差機関」から

                                        Twitterで話題になっていた、「1Byteは何故8bitなのか?」という課題に、コンピュータの歴史に詳しい大原雄介さんが取り組んでくれた。 いつものようにヘロヘロと仕事をしていると、突如担当編集の松尾氏からMessengerで「これに対するちゃんとした回答を書けるのは大原さんだなということで、また歴史物をお願いしたく」という依頼が飛び込んできた。 いやちゃんとした回答も何も、上のTreeで出題されたSEライダー氏が正解を出されているわけですが、歴史的経緯というか、ここに至るまでの話というのが長い訳で、その辺りを少し説明してみたいと思う。 ちなみに出題に少しだけ違和感がある(なぜ10bitがキリがいいと思うのか?)のは、筆者もこっち側の人間だからかもしれない。 回答の前に、その根底にある2進数採用の経緯 そもそも非コンピュータ業界の方からすれば、2進数がベースという辺りから違和感を覚える

                                          「1Byteが8bitに決まったワケ」についての長い話 まずは「バベッジの階差機関」から
                                        • Twitter で医師を拾ってきて Google のソフトウェアエンジニアにするだけの簡単なお仕事 - 白のカピバラの逆極限 S.144-3

                                          はじめに 「【転職エントリ】Googleに入社します|Lillian|note」という、医師から未経験で Google のソフトウェアエンジニアになった記事があります。 note.com 私は、この記事に出てくる「とある元 Google のソフトウェアエンジニア」で、面接の対策を立てました。 記事が出た当初から大反響で、私もそれなりの反応を見まして、いろいろと誤解されているなあ、と思う一方、アドバイザーはあくまでもアドバイザーだから、アドバイザーとして知りえた情報については、口をつぐむべきだと思っていました。 ただ、あまりにも誤解されており、悪影響が大きく、犠牲者も多くなってきたと思ったので、許可を得て簡単に背景を書いておこうかと思います。 これはあくまでもアドバイザー側からどう見えていたかを書いておくものですが、医学部卒だけでも3,4人 Google や Amazon に入っていったおぼ

                                            Twitter で医師を拾ってきて Google のソフトウェアエンジニアにするだけの簡単なお仕事 - 白のカピバラの逆極限 S.144-3
                                          • 技術ようつべチャンネル集 - Qiita

                                            役立つYouTubeのチャンネルまとめ 数学、物理、アルゴリズム、プログラミング、などなど自分が使う技術に役立ちそうだな、困ったときによく見たなと思うチャンネルを紹介する。 取っ掛かり、ハマりがち、コツみたいな物が拾える。数学がメイン。随時更新していくつもり。 当たり前だけどちゃんと本も読んで勉強するんだぞ。 背景 YouTubeは視聴する登録チャンネルの数が増えると、チャンネルが埋もれて発掘困難になりがち (chrome拡張でできるチャンネルのフォルダ分け機能は、ぽちぽち登録するのも面倒で、そのフォルダの中から掘り出すのも難しい) モチベが上がる(おべんつよしたい)チャンネルを探してるうちに湧いてくる、わんにゃんコンテンツ(だいちゅき)に流され一日が終わるため、 モチベが上がる有用なチャンネルにすぐにたどり着くために、よく使うQiitaに列挙しておくことにした Streamや大学専用サイ

                                              技術ようつべチャンネル集 - Qiita
                                            • 孫さんがPCR検査を大々的にやるとツイートしたら、多くの方から医療崩壊が起こるというメッセージが来ているようですが、なぜ医療崩壊が起こるんでしょうか?に対するKenn Ejimaさんの回答 - Quora

                                              • Python言語による実務で使える100+の最適化問題 | opt100

                                                指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー

                                                • 線形代数とは?初心者にもわかりやすい解説 | HEADBOOST

                                                  「線形代数を簡単に理解できるようになりたい…」。そう思ったことはないでしょうか。当ページはまさにそのような人のためのものです。ここでは線形代数の基礎のすべてを、誰でもすぐに、そして直感的に理解できるように、文章だけでなく、以下のような幾何学きかがく的なアニメーションを豊富に使って解説しています。ぜひご覧になってみてください(音は出ませんので安心してご覧ください)。 いかがでしょうか。これから線形代数の基礎概念のすべてを、このようなアニメーションとともに解説していきます。 線形代数の参考書の多くは、難しい数式がたくさん出てきて、見るだけで挫折してしまいそうになります。しかし線形代数は本来とてもシンプルです。だからこそ、これだけ多くの分野で活用されています。そして、このシンプルな線形代数の概念の数々は、アニメーションで視覚的に確認することで、驚くほどすんなりと理解することができます。 実際のと

                                                    線形代数とは?初心者にもわかりやすい解説 | HEADBOOST
                                                  • 君はインド最大(多分世界最大)の無料MOOCの「NPTEL」を知っているか。

                                                    俺はさっきまで知らなかった。これはやばすぎるので増田に書いて広めようと思う。(追記にも書いたが、公式の英語字幕があるので聞き取れなくても心配しないでほしい。) 以下のリンクから飛べる。 https://nptel.ac.in/courses リンク先を見ればすぐ分かると思うが、驚くべきは、カバーしている分野の広さだ。アメリカのMOOC(Udacityだの、Udemyだの)は、表層的な、「すぐ使える技術」の講座ばかりで、オペレーティングシステムやコンピュータネットワーク、あるいは偏微分方程式や代数学といった、コンピュータサイエンスや数学等の基礎学問のような分野はあまりカバーされていない。(主観だが、恐らく正しいはずだ。Udacityのジョージア工科大のコンピュータサイエンスの授業は別だが、数は少ないし、それにしても数学はカバーしていない。) しかし、この「NPTEL」では、自分に関わりのある

                                                      君はインド最大(多分世界最大)の無料MOOCの「NPTEL」を知っているか。
                                                    • 「このままでは8割減できない」 「8割おじさん」こと西浦博教授が、コロナ拡大阻止でこの数字にこだわる理由

                                                      Search, watch, and cook every single Tasty recipe and video ever - all in one place! News, Politics, Culture, Life, Entertainment, and more. Stories that matter to you. 「このままでは8割減できない」 「8割おじさん」こと西浦博教授が、コロナ拡大阻止でこの数字にこだわる理由緊急事態宣言も出て、新型コロナウイルスの流行拡大を防ぐため人との接触を8割減らすことが求められている。ところが、緊急事態宣言直前に誰かに資料の数値が書き換えられ、「7〜8割削減」「6割でもいいのか」など、様々な数字が出回っている。8割削減という目標をはじき出した「8割おじさん」こと西浦博さんを取材した。

                                                        「このままでは8割減できない」 「8割おじさん」こと西浦博教授が、コロナ拡大阻止でこの数字にこだわる理由
                                                      • なぜ、ソフトウェアプロジェクトは人数を増やしても上手くいかないのか - Qiita

                                                        はじめに ソフトウェアプロジェクトには不思議な性質があります。現状のスケジュールに課題を感じて、短くするために人員を投下しても、なかなか思い通りに短くならない。それどころか悪化してしまうことがあります。場合によってはプロジェクト自体が破綻して失敗してしまうことすらあります。 今回は、このようなソフトウェアプロジェクトに潜む直感に反する性質を数理的なモデルを介して理解していく試みです。ある種の思考実験としてお楽しみください。 宣伝 Qiitaさんとコラボ企画でアドベントカレンダーをつくりました。 DXをめちゃくちゃ改善した話を募集しています。 https://qiita.com/advent-calendar/2021/dx-improvement 10人の妊婦がいても1ヶ月で一人の子供は生まれない これは誰かの技術力やプロジェクトマネジメント力に欠陥があるのではなく、「人月の神話」で有名な

                                                          なぜ、ソフトウェアプロジェクトは人数を増やしても上手くいかないのか - Qiita
                                                        • アルゴリズムビジュアル大事典

                                                          このサポートページでは、マイナビ出版発行の書籍「アルゴリズムビジュアル大事典」にて作成しましたシンボル、アニメーション、疑似コードを掲載いたします。また、内容のアップデートを行ってまいります。詳しい解説は、本書をご参考にしてください。 アニメーションコントローラの使い方はクイックマニュアルでご確認頂けます。 補足情報が表示されているトピックにつきましては、ご注意ください。その他の訂正等は正誤表をご覧ください。ご質問、不具合等のご報告は、ご遠慮なくy.watanobe@gmail.com(渡部)までお送りください。

                                                          • ディープラーニング入門:Chainer チュートリアル

                                                            Chainer チュートリアル 数学の基礎、プログラミング言語 Python の基礎から、機械学習・ディープラーニングの理論の基礎とコーディングまでを幅広く解説 ※Chainerの開発はメンテナンスモードに入りました。詳しくはこちらをご覧ください。 何から学ぶべきか迷わない ディープラーニングを学ぶには、大学で学ぶレベルの数学や Python によるプログラミングの知識に加えて、 Chainer のようなディープラーニングフレームワークの使い方まで、幅広い知識が必要となります。 本チュートリアルは、初学者によくある「まず何を学べば良いか」が分からない、 という問題を解決するために設計されました。 初学者は「まず何を」そして「次に何を」と迷うことなく、必要な知識を順番に学習できます。 前提知識から解説 このチュートリアルは、Chainer などのディープラーニングフレームワークを使ったプログ

                                                              ディープラーニング入門:Chainer チュートリアル
                                                            • 真面目なプログラマのためのディープラーニング入門

                                                              はじめに: 本講座は「機械学習ってなんか面倒くさそう」と感じている プログラマのためのものである。本講座では 「そもそも機械が『学習する』とはどういうことか?」 「なぜニューラルネットワークで学習できるのか?」といった 根本的な疑問に答えることから始める。 そのうえで「ニューラルネットワークでどのようなことが学習できるのか?」 という疑問に対する具体例として、物体認識や奥行き認識などの問題を扱う。 最終的には、機械学習のブラックボックス性を解消し、所詮は ニューラルネットワークもただのソフトウェアであり、 固有の長所と短所をもっていることを学ぶことが目的である。 なお、この講座では機械学習のソフトウェア的な原理を中心に説明しており、 理論的・数学的な基礎はそれほど厳密には説明しない。 使用環境は Python + PyTorch を使っているが、一度原理を理解してしまえば 環境や使用言語が

                                                                真面目なプログラマのためのディープラーニング入門
                                                              • 「未経験文系から3ヶ月でデータサイエンティストになって一発逆転」はここで終わり (2020/7/31 更新) - todo-mentor’s diary

                                                                データサイエンティストを生業にする手段と実態について述べる。 途中、具体例・境界値の例として私個人の話もするが、なるべく一般性のある話をする。 この記事で言いたいことは具体的には4つだ。 プログラミングスクールをディスるなら代わりの入門方法を提供しようよ。 もう「未経験文系から3ヶ月でデータサイエンティストで一発逆転物語」を止めろ。*1 おじさんは人生逆転したいなら真面目にやれ。 若者はワンチャンじゃなくて、ちゃんと化け物になれよ。 この記事についてはパブリック・ドメインとして転載・改変・リンク記載を自由にしてよいです。 (続き書いた) a. 入門は辛いが… b. 思考停止でプログラミングスクールに通うな。 なろう系・始めてみよう系資料一覧 (最速・最短ルート用) まずは動かしてみよう。強くてニューゲームが体験出来るぞ! 入門以前の本 一般向け業界本 (AI業界と展望がわかる本) 技術者入

                                                                  「未経験文系から3ヶ月でデータサイエンティストになって一発逆転」はここで終わり (2020/7/31 更新) - todo-mentor’s diary
                                                                • 数学ガールオタクが初見VTuberの積分配信にめちゃくちゃ感動したメモ1|kqck

                                                                  私はタイムラインとトレンドを一切見ないタイプのツイ廃なので、流行の話題に乗り遅れることが多々ある。(それでいいと受け入れている) そのため「不登校だった(?)VTuberが積分についてイチから勉強する配信」が少し前に話題になっていたらしいと今さら知った。 私はVTuberのオタクではない。ときどきのらきゃっとさんの放送を観るくらいで、今をときめくホロライブとかにじさんじについては何も知らない。 ただ、私は数学ガールのオタクである。 数学ガールとは、ラノベ風の数学読み物シリーズだ。ラノベと言っても、扱う数学は高校〜大学レベルかそれ以上と、ガチである。(派生した『数学ガールの秘密ノート』シリーズでは中学〜高校レベルの易しい内容を扱っている) 私は本当に数学ガールシリーズが好きで好きでたまらなく、約1年前からはレビュアーとして出版前の原稿を読ませて頂いている。だから「著者からの回し者とかではござ

                                                                    数学ガールオタクが初見VTuberの積分配信にめちゃくちゃ感動したメモ1|kqck
                                                                  • 音階の数学|じーくどらむす

                                                                    私の大好きな数学者の名言で、「音楽は感性の数学であり、数学は理性の音楽である」という言葉があります。 数を原理とするピタゴラス教団がピタゴラス音律を作り出し、そこから純正律という整数比率によるハーモニーを重視した音律が作られたことからも、音楽と数学の関係性は深いと言えるでしょう。 しかし、 実際に数学を多少わかって、音楽を多少嗜んでいる方であれば、音楽で使われる様々な単位への違和感を感じたことがあるのではないでしょうか。 とにかく既存の音楽理論や音楽文化が、「12音種」「7幹音」「5線譜」「1から数える」すべてが噛み合っていない感じがすごい。この噛み合ってない上で究極の覚えゲーを重ねがけして理論作り上げてんのヤバい。 — じーくどらむす/岩本翔 (@geekdrums) July 12, 2020 音楽を取り巻く数への違和感まずこの「12音階」(ド~シまで、#、♭も含めた1オクターブ以内の

                                                                      音階の数学|じーくどらむす
                                                                    • COVID-19 感染予測 (日本版) の公開について | Google Cloud 公式ブログ

                                                                      Google Cloud は今年 8 月に Harvard Global Health Institute とのパートナーシップのもとで COVID-19 Public Forecasts を公開しました。このサービスは予測開始日から将来 14 日間における米国内の COVID-19(新型コロナウイルス感染症)陽性者数や死亡者数などの予測を提供しています。この度、本サービスを日本にも拡張し、COVID-19 感染予測(日本版)の提供を開始します。日本版では予測開始日から将来 28 日間のあいだに予測される国内の陽性者数や死亡者数等の予測値を表示します。 米国で提供している COVID-19 Public Forecasts は AI と膨大な疫学的データを組み合わせ、さらに、時系列の予測を扱う斬新な機械学習のアプローチを採用することで実現しました。米国向けのこの初期モデルは今年 8 月に初

                                                                        COVID-19 感染予測 (日本版) の公開について | Google Cloud 公式ブログ
                                                                      • はじめに — 機械学習帳

                                                                        import torch x = torch.tensor([1., -1.]) w = torch.tensor([1.0, 0.5], requires_grad=True) loss = -torch.dot(x, w).sigmoid().log() loss.backward() print(loss.item()) print(w.grad)

                                                                          はじめに — 機械学習帳
                                                                        • 【新卒研修資料】基礎統計学 / Basic of statistics

                                                                          株式会社ブレインパッドの2023年新卒研修資料です。基礎統計学について扱っています。

                                                                            【新卒研修資料】基礎統計学 / Basic of statistics
                                                                          • 9割の人が知らない再現性の危機 - 本しゃぶり

                                                                            本で読んだ知識をドヤ顔で紹介したら、その実験には再現性がありませんでした。 そんな恥ずかしい記事を書いたブロガーは誰でしょう? そう、私です。 ステレオタイプ脅威はありますん ちょっと前に「ステレオタイプ脅威」の記事が話題になっていた*1。 世の中には「女性は数学に弱い」というような負のステレオタイプがある。自分のアイデンティティがそれに該当していると意識してしまうと、実際にパフォーマンスが落ちるというものだ。これは様々な実験の結果によって示されている。というのが記事で紹介されていた話だった。 ところが現在、その「実験結果」は再現性が無いと言われている。ステレオタイプ脅威の根拠は実験結果にあるというのに、その土台は不確かなものであるのだ。 とくに、最近の研究ではほとんど再現性がないとされている「ステレオタイプ脅威」について、リベラルバイアスにも言及しながら議論しているのが印象的。 日本では

                                                                              9割の人が知らない再現性の危機 - 本しゃぶり
                                                                            • 総務省「誰でも使える統計オープンデータ」無料オンライン講座スタート

                                                                              総務省は1月11日、データサイエンスのオンライン講座「誰でも使える統計オープンデータ」を、MOOC講座プラットフォーム「gacco」で開講した。社会人・大学生に、統計オープンデータを活用したデータ分析の手法を解説する講座で、3月7日まで受講できる。 週約3時間×4週間の内容。政府統計の総合窓口「e-Stat」、総務省と統計センターが提供する統計GIS、API機能などを使い、データ分析の手法を学べる。 講師は「統計学が最強の学問である」の著書で知られる統計家の西内啓氏や、総務省統計局の担当者など。 2017年6月に初開講して以来、断続的に開講し、のべ約2万8000人が受講した講座。 関連記事 政府が「ワクチン接種状況ダッシュボード」公開 性別や都道府県別に可視化 政府が、全国の新型コロナワクチンの接種状況を一覧にまとめた「ワクチン接種状況ダッシュボード」を公開。統計情報をまとめたCSVやJS

                                                                                総務省「誰でも使える統計オープンデータ」無料オンライン講座スタート
                                                                              • 積分とは・対数とは・微分とは〜「分かる」とはどういうことか〜

                                                                                文系向け「統計学」の授業で、積分・対数・微分を復習する機会があった。その時の「1枚スライド」を公開した。この図をめぐって、「分かる」とはどういうことか、について多くのコメントをいただいた。それを、まとめました。(話が同時並行で進行するので、スレッド風の「まとめ」です。) 注意:積分は、統計学の場合、正規分布表を見るために必要。対数の必要性は、尤度関数(尤もらしさ)の対数をとって計算を簡単にする式変形で使うため。微分の必要性は、確率密度関数の最大値(尤度最大の条件)を求めるため。どれも統計学で必須の内容。 注意2:(追記8/6)ここに出てくる「指数、対数、微分、積分」は「感染症の数理モデル」の基礎となっている。 注意3:(追記8月9日)番外編『「積分」と「源氏物語」〜「晩年の清少納言」から「京都女子大」まで』へのリンクはこちらです。https://togetter.com/li/157284

                                                                                  積分とは・対数とは・微分とは〜「分かる」とはどういうことか〜
                                                                                • 仏紙が唸る「数学を世間に広める能力で、時枝正にかなう者はいない」 | 直感の逆を突き、驚かせ、人の未知への欲求を刺激する

                                                                                  スタンフォード大学の教授で数学者の時枝正(ときえだ・ただし)は、「おもちゃ」を使って数学や物理の定理を解き明かす。スープ皿や木のレール、大きなコインを手に、「ショー」とも呼べそうな講義をいかにも楽しげに始めるその姿に、聴衆は一瞬にして心を惹きつけられるという。 数学者には二つのタイプがいるという──。一つは、チョークを握り黒板に向かう、理論派タイプ。もう一つは、フェルトペンとホワイトボードを使う、どちらかというと応用数学系の人である。 その伝でいうと、時枝正は第三のタイプの数学者である。しかもこの第三のタイプは、世界広しといえども彼一人だけの可能性がある。 時枝は仕事道具をどれも煎餅の空箱から取り出すのだが、箱は「すべて同じブランドのもの」なのだそうだ。たとえばその中身は、見かけはそっくりなのに、転がるものと転がらないものがある二つの不思議な構造物。ひもや輪ゴム、クリップの扱い方は、まるで

                                                                                    仏紙が唸る「数学を世間に広める能力で、時枝正にかなう者はいない」 | 直感の逆を突き、驚かせ、人の未知への欲求を刺激する

                                                                                  新着記事