3つの要点 ✔️ ViTは、すべての層でより均一な表現(特徴量)を持っている。つまり各層での表現が似ている。 ✔️ ViTは、自己注意(self-attention)により早期にグローバルな情報を集約できる。 ✔️ ViTは、表現を下位層から上位層へ強く伝搬させる。 Do Vision Transformers See Like Convolutional Neural Networks? written by Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, Alexey Dosovitskiy (Submitted on 19 Aug 2021 (v1), last revised 3 Mar 2022 (this version, v2)) Comments: Published on arxiv.
概要 Deep Learningでは訓練データを学習する際は一般にミニバッチ学習を行います。 学習の1ステップでは巨大なデータセットの中から代表的なデータを一部取り出して、全体データの近似として損失の計算に使います。バッチことに平均の損失を計算することで、データ数に関係なく統一した学習をすることが狙いです。本記事ではニューラルネットワークの学習安定化を図るためのバッチ正規化手法“Batch Normalization”について議論します。 学習時の重みの初期値の重要性 勾配消失・過学習などに陥って学習に失敗した際、様々なことが要因のして考えられますが中でも見落としがちなのが重みの初期値です。各層の活性化関数の出力の分布は適度な広がりを持つことが求められます。適度に多様性を持ったデータが流れたほうが効率的な学習ができますが、偏ったデータが流れると勾配消失が起きる場合があります。そこで、初期値
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く