タグ

2024年3月12日のブックマーク (2件)

  • メンバー1人1人のスキルアップを促す「等級(グレード)」と「給与テーブル」|風音屋(かざねや)

    風音屋(@Kazaneya_PR)では、メンバー1人1人のスキル水準をモニタリングし、さらなる成長を促すための仕組みとして「等級(グレード)」を設定しています。プロフェッショナル人材が少しでも正当な評価とフィードバックを受けられるように試行錯誤を経てきました。 採用選考を進める中で「自分の場合はどのくらいのグレードになるのか?」というご質問をいただく機会が多々あります。この記事では、どういった考え方でグレードを設計・運用しているのかを、給与テーブルとセットで解説します。 注意事項クライアントワークを担当するAnalytics部門を想定した内容となっています。Backoffice部門の給与テーブルは試行錯誤中ですが、ベースとなる考え方は同じような形に落ち着くはずです。 人事周りのルールは今後変わっていく可能性があります。最新状況についてはカジュアル面談でお問い合わせください。 すべての人にと

    メンバー1人1人のスキルアップを促す「等級(グレード)」と「給与テーブル」|風音屋(かざねや)
  • Dockerで構築する機械学習環境【2024年版】

    Dockerを使った機械学習環境の構築方法 株式会社松尾研究所で働いているからあげ(@karaage0703)です。松尾研究所では、機械学習(ここでは、予測モデル、画像認識からLLMまで幅広く扱います)を使う多数のプロジェクトが走っています。プロジェクトの特性は多種多様なので、環境構築方法は様々なのですが、松尾研究所では、環境構築方法の1つとしてDockerを推奨していています。今回はDockerを使った機械学習環境の構築方法を紹介します。 松尾研究所の特にインターン生を想定した記事にはなりますが、他の組織、個人の方にも参考になる部分があるかと思いWebに広く公開させていただきます。 なぜDocker機械学習環境を構築するのか? 具体的な手法に入る前に、まずはDocker機械学習環境を構築する理由から説明したいと思います。説明が不要な方はここはスキップしてもOKです。 そのために、Do

    Dockerで構築する機械学習環境【2024年版】