YouTube でお気に入りの動画や音楽を楽しみ、オリジナルのコンテンツをアップロードして友だちや家族、世界中の人たちと共有しましょう。
This was bugging me over the weekend: What is a good way to solve those Where's Waldo? ['Wally' outside of North America] puzzles, using Mathematica (image-processing and other functionality)? Here is what I have so far, a function which reduces the visual complexity a little bit by dimming some of the non-red colors: whereIsWaldo[url_] := Module[{waldo, waldo2, waldoMask}, waldo = Import[url]; wa
私の一番のmotivationはこのセッションでした。 11:00〜11:50 講師: 岡野原 大輔さん(blog, twitter) 所属:株式会社プリファードインフラストラクチャー(PFI)特別研究員, 東京大学辻井研, 辻井研の論文 講演タイトル:SBMの推薦アルゴリズム 〜はてなブックマークのレコメンド(関連エントリ)の仕組み〜 資料upあり videoあり rf. はてなおやさんの資料 講演概要 本発表では、SBMの推薦アルゴリズムにおける精度、処理性能向上のための手法を最新の研究成果も含めて解説する。また、実例として、はてなブックマークにおける「関連エントリ」を弊社のシステムがどのように実現しているかを解説する。 以下は私のメモです。 PFIはもともとPurely Functional Infrastructureやったんや 岡野原さんではないが、(大田さんかな)Haskell
EMアルゴリズム(Expectation Maximizationアルゴリズム、期待値最大化法、以下EMと呼ぶ)は、データに観測できない隠れ変数(潜在変数)がある場合のパラメータ推定を行う時に有用な手法である。 EMは何それという人のために簡単な説明を下の方に書いたので読んでみてください。 EMのきちんとした説明なら持橋さんによる解説「自然言語処理のための変分ベイズ法」や「計算統計 I―確率計算の新しい手法 統計科学のフロンティア 11」が丁寧でわかりやすい。 EMは教師無学習では中心的な手法であり、何か観測できない変数を含めた確率モデルを作ってその確率モデルの尤度を最大化するという枠組みで、観測できなかった変数はなんだったのかを推定する場合に用いられる。 例えば自然言語処理に限っていえば文書や単語クラスタリングから、文法推定、形態素解析、機械翻訳における単語アライメントなどで使われる。
"集合知プログラミング" という本が出たらしい. 私の積読には元本の "Programming Collective Intelligence" があって, 途中まで読んだまま放置していたら日本語訳が出てしまった. (オライリーのアンチパターンと命名.) 悔しいので本は処分. そのうち日本語版で続きを読もう.... 興味を持っていたのは推薦エンジン(協調フィルタ)だった. 私の中では検索エンジンに匹敵するウェブのハイテクという位置付けなんだけど, 草の根には普及しておらず悲しい. 検索エンジンでの Hyper Estraier や senna に相当する協調フィルタの立ち位置は デッドヒートが予想される...とだいぶ前から思ってるんだけど, いまのところ閑古鳥気味. まったく, 出し抜くだけの実力があればなあ. 先の皇帝ペンギン本では, 一章にさっそく協調フィルタが登場する. 読んでみると
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く