Top > ラーニング > 京都大学、Pythonの基本を解説した無料の教科書「素晴らしすぎる」「非常にわかりやすくて良い」
東京大学がちょっとびっくりするくらいの超良質な教材を無料公開していたので、まとめました Python入門講座 東大のPython入門が無料公開されています。scikit-learnといった機械学習関連についても説明されています。ホントいいです Pythonプログラミング入門 東京大学 数理・情報教育研究センター: utokyo-ipp.github.io 東大のPython本も非常にオススメです Pythonによるプログラミング入門 東京大学教養学部テキスト: アルゴリズムと情報科学の基礎を学ぶ https://amzn.to/2oSw4ws Pythonプログラミング入門 - 東京大学 数理・情報教育研究センター Google Colabで学習出来るようになっています。練習問題も豊富です https://colab.research.google.com/github/utokyo-ip
指針 厳密解法に対しては、解ける問題例の規模の指針を与える。数理最適化ソルバーを使う場合には、Gurobi かmypulpを用い、それぞれの限界を調べる。動的最適化の場合には、メモリの限界について調べる。 近似解法に対しては、近似誤差の指針を与える。 複数の定式化を示し、どの定式化が実務的に良いかの指針を示す。 出来るだけベンチマーク問題例を用いる。OR-Libraryなどから問題例をダウンロードし、ディレクトリごとに保管しておく。 解説ビデオもYoutubeで公開する. 主要な問題に対してはアプリを作ってデモをする. 以下,デモビデオ: 注意 基本的には,コードも公開するが, github自体はプライベート そのうち本にするかもしれない(予約はしているが, 保証はない). プロジェクトに参加したい人は,以下の技量が必要(github, nbdev, poetry, gurobi); ペー
みなさんこんにちは。くにです。 データ分析の世界に足を踏み入れてから9年が過ぎました。 分析実務未経験でキャリアチェンジできたのは幸運としか言えませんが、ある意味無知だったからこそ無謀な挑戦ができたのかもしれません。この挑戦の泥臭い記録は、この記事に書きました。 ポジションは変われど、データを扱う仕事をまだ続けています。 私は実務で手を動かしつつ、不格好に失敗しながら学んできました。わからないことにぶつかるたびに本を買い、その本でわからないことがあればまた本屋に行き、自分が少しでも理解できそうな本を探して買いました。そして、気になる参考文献があれば、それも買って読んでみる…。 こんな生活を続けているうちに、部屋が本だらけになってしまいました。 正直に言って読み切ったという実感のある本はありません。しかし、実務で何かしらお世話になった本は数多くあり、そういう本は手放さずに手元に置いています。
【JS/ Python両方OK!】「データ可視化」が歴史から実装まで体系的に学べるStanford講座の独習ノートJavaScriptd3.jsデータ分析データサイエンスcolaboratory CS 448B Visualization (2020 Winter)は、Maneesh Agrawala氏による、Stanford大で行われた、データの可視化に関する体系的な講義です。 スタンフォード大の"CS 448B Visualization (2020 Winter)" がすごい。 データ可視化の体系的講義。どう図表に変換するかの理論、探索的データ分析、ネットワーク分析等の実践と盛り沢山。 スライドに加え、Observable(JavaScript), Colab(Python)どちらでも例を試せる。https://t.co/lGyPElrihg pic.twitter.com/mWZn
※最新版(2021年バージョン)がこちらにありますので合わせてご覧ください! 毎年恒例, Python本と学び方の総まとめです!*1 プログラミング, エンジニアリングに機械学習と今年(2019年)もPythonにとって賑やかな一年となりました. 今年もたくさん出てきたPythonの書籍や事例などを元に, 初心者向けの書籍・学び方 仕事にする方(中級者)へのオススメ書籍 プロを目指す・もうプロな人でキャリアチェンジを考えている方へのオススメ を余す所無くご紹介します. 来年(2020年)に向けての準備の参考になれば幸いです. ※ちなみに過去に2019, 2018, 2017と3回ほどやってます*2. このエントリーの著者&免責事項 Shinichi Nakagawa(@shinyorke) 株式会社JX通信社 シニア・エンジニア, 主にデータ基盤・分析を担当. Python歴はおおよそ9年
本記事は、kaggle Advent Calendar 2018の17日目の記事です。 qiita.com 何を書くか直前まで悩んでいましたが、16日に参加したAIもくもく会の中で、 機械学習に興味はあるけど、どのような手順で、何から勉強していったら良いかわからない という方が数名いたので、自分が今年の3月くらい〜今日に至るまで勉強してきた中から 今の自分ならこのような手順で勉強することをオススメする!という記事を書いてみようと思います。 ※自分の勉強した教材の中からのオススメになるので、偏った内容になることをご了承ください。 ※これもオススメ!というものがありましたら、ぜひ教えていただけると嬉しいです。 タイトルにあるメダルより大切なものについては最後に記載しております。 対象読者 2018年3月時点の筆者スペック 2018年3月〜今日に至るまで勉強したこと羅列 書籍 動画 udemy
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く