東大が無償でPDF公開している,統計学会の75周年記念出版『21世紀の統計科学』の3冊 1と2は実際の統計データを用いて,各事例への統計学の応用手法,3は機械学習の人なら馴染み深い統計計算を解説 下手な市販の本を買うよりは,この3… https://t.co/w2cSVIxmUI
(Background image by Pixabay) 最近また「データ分析をやるならRとPythonのどちらでやるべきか」という話題が出ていたようです。 言語仕様やその他の使い勝手という点では、大体この記事に書いてあることを参考にすれば良いと思います。その上で、人には当然ながら趣味嗜好がありますので、個々人が好みだと思う方を使えば良い話ではあります。 とは言え、僕自身もクソコードの羅列ながらこのブログにR & Pythonのコードを載せているということもあるので、便乗して今回の記事では僕個人の意見と感想も書いてみようと思います。いつもながらど素人の意見(特にPythonは本業ではない)なのと、自分がメインに使っているRでもtidyverseをほとんど使わないなど割とout-of-dateな使い方をしているということもあり、読んでいておかしなところなどあればどしどしご指摘くださると有難
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに: 統計学の重要性 NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。 今回は統計検定 1 級について記します。 統計検定とは日本統計学会による公認の資格であり、統計に関する知識や活用力を評価するものです。 日常的に大量のデータが溢れている昨今、データ分析や機械学習に対するニーズは最高の高まりを見せています。最近では何も考えずともただデータを入力するだけでデータ分析や機械学習手法を実行してくれるツールも多数出回るようになりました。 データ分析や機械学習を実際に遂行するにあたって、統計学は強力な基
2017年1月20日追記:『ダメな統計学――悲惨なほど完全なる手引書』という本が出版されることになった。この本は、ここに掲載されているウェブ版の『ダメな統計学』に大幅に加筆したものだ。ウェブ版の『ダメな統計学』を読んで興味を持った方は、書籍となった『ダメな統計学』をぜひ読んでいただければと思う。書籍版の詳細については「『ダメな統計学――悲惨なほど完全なる手引書』の翻訳出版」という記事をご参照願いたい。 ここに公開する『ダメな統計学』は、アレックス・ラインハート (Alex Reinhart) 氏が書いたStatistics Done Wrongの全訳である。この文章は全部で13章から構成されている。詳しくは以下の目次を参照されたい。 はじめに データ分析入門 検定力と検定力の足りない統計 擬似反復:データを賢く選べ p値と基準率の誤り 有意であるかないかの違いが有意差でない場合 停止規則と
photo by labguest 必ず知らなくてはいけないものではないけれど、ちょっと気なるし知れば「ほほ~」となる知識。それが統計データです。とはいえ明確な目的もなく総務省や厚生労働省のサイトに行って統計データを眺めるというのもちょっとアレですよね。そんな現状を打破するべく、総務省がやってくれました! 総務省統計局と統計センターは、4月15日、統計のオープンデータ高度化への取り組みの一環として、Android搭載スマートフォン向けの統計情報提供アプリ「アプリDe統計」試行版の提供をGoogle Playで開始した。価格は無料。 総務省、統計を身近に感じられるAndroidスマートフォン向け情報提供アプリ「アプリDe統計」 このアプリには3つの機能があり ① 「City Stat」:今、自分がいる場所の市区町村の統計データをスマートフォンのGPSと統計API機能を連動させ表示 ② 「ポケ
はじめに 最近超人気の漫画として私のTwitter TLを賑わす作品、その名も「進撃の巨人」。 これだけ人気なんだからきっと面白いに違いないのですが、 なんか絵が怖そうだし、人がバンバン死んでてグロいっぽいという噂を聞くので、 なんとか漫画を読まずに、それでいて進撃の巨人のキャラについては知りたい、 そう願う潜在的進撃の巨人ファンも全国に70万人くらいいらっしゃると思います。 そこで、データから進撃の巨人にどんなキャラが登場するか推測してみましょう。 扱うデータとして、pixivのタグ情報を利用します。 商品レビューコメントなどとは違い、ファンの創作活動がダイレクトに反映されるサービスなので、 そこに付与されるタグ情報は、ファンの熱(過ぎる)いメッセージが込められているに違いありません。 今回、以下のような縛りを入れています。 1.勿論原作は見ない 2.pixivのタグ情報は参照するけど、
はじめに なぜか唐突にRブームが俺の中でやってきてしまってどうしようもないので、Rの本を注文しまくってたりしていたら、下のような本の山が出来てしまいました。 これらの本を付箋でペタペタしながら読み進めていくうちに、段々とRというのはどういう言語で、どういう風に勉強するといいのか、という方針が固まってきたので、ここにメモをしておきます。 Rとはどのような言語か 一言で、しかも乱暴に言ってしまうならば「統計に特化したPHP」というのが一番雰囲気を伝えられるかもしれない。いや、PHPの悪評は知っているし、ガチでRをやっている人にとっては嫌がられることもわかっているけど、あえてそういう説明が、あくまで入り口としてはわかりやすいのではないかと。 どういうことかというのを言い訳します。 自分が読んだ感じだと、統計というのは、「何らかのデータ」と「分析するためのツールとしての数式」と「その数式が意図する
アカデミアでもビジネスでも統計解析のニーズは高くて、 データを分析して欲しいというような依頼は結構くる。 しかし、分析の対価としてどこまで給料をもらうべきなのか、 というのはなかなか難しい問題だ。 完全にビジネスとして外注して、博士レベルの統計屋に 分析をさせると、単価は1時間で100ドル前後のようだ。 以前に、コンサルティング会社が時給75ドルでそういった求人を 出していたから、マージンなどを考えれば大体そんなものなのだろう。 継続的に分析案件が発生するのであれば、 常勤で統計屋を雇えばもっと安く済む。 私も、大学院生の時は、医学部でデータの分析をして、 生活費や給料、健康保険料を払ってもらっていた。 一番厄介なのは、依頼者が案件をあくまで「共同研究」だと考えている場合である。 もちろん雑誌や学会等に投稿することになれば、 分析者として共著者に名前を入れてもらうことになるが、 それが統計
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く