Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

機械学習Podcast「TWiML&AI」で先週取り上げられた可視化ライブラリ「Yellowbrick」が非常に便利だったので紹介します!ちなみにPodcastには作者の1人であるRebecca Bilbroさんが出演しているので興味持った方は是非聞いてみてください。 twimlai.com www.scikit-yb.org Yellowbrickとは 一言で言うと、機械学習に特化した可視化ライブラリです。実装的な面で言うと(こちらの方がわかりやすいかもしれません)、scikit-learnとmatplotlibをラップして、scikit-learnライクなAPIで使うことができるものです。 例えば相関行列のヒートマップをプロットしたい場合は次のように書くだけでグラフを作ることができます。 visualizer = Rank2D(features=features, algorithm=
Pythonの可視化ライブラリ「Bokeh」ではじめるデータビジュアライゼーション Bokehではじめるデータビジュアライゼーション 2019年1月22日、freee株式会社にて、Data Driven Developer Meetupが主催するイベント「Data Driven Developer Meetup #4」が開催されました。サービスをより良いものにするために日々データと向き合っているデータサイエンティストやエンジニアなど、様々な職種で活躍する人々が集い、知見を共有する本イベント。今回は日本経済新聞社とエムスリー株式会社の2社がメインセッションに登壇し、自社の取り組みについて語りました。プレゼンテーション「Bokehではじめるデータビジュアライゼーション」に登場したのは、YukiyoshiSato氏。デモを交えながら、Pythonのインタラクティブビジュアライゼーションライブラリ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く