2 Table of π(x), x/log(x), and li(x)
ポラード・ロー素因数分解法(英: Pollard's rho algorithm)は、特殊用途の素因数分解アルゴリズム。1975年、ジョン・ポラード(英語: John Pollard)が発明した。合成数を素因数に効率的に分解する。 概念[編集] 一般に素因数分解は、対象の数 n について、その平方根以下の全ての素数について n を割ってみる。しかし、これは n が大きい場合に対象となる全ての素数が明らかでないという問題が生じる。ポラード・ロー素因数分解法は、そのような場合に大きな素因数を確率的に探す乱択アルゴリズムである。 このアルゴリズムはフロイドの循環検出法に基づいており、また2つの数 x と y が p で割り切れるには、ランダムに 個の数を選んだとき半分以上の確率で共に割り切れるという観測結果に基づいている(誕生日のパラドックスを参照)。p が素因数分解したい n の素因数であると
Competitive Programming Advent Calendar 3日目は、数学っぽい話をしたいと思います。 N以下の素数をすべて求めよ。 N以下の素数の個数を求めよ。 A以上B以下の素数の個数を求めよ。 こんな感じの問題を見たことがあると思います。また問題としてでなくても、解く過程にこのようなサブ問題を解かなければいけない場合もよくあると思います。素数については説明しなくてもいいですよね? このような問題を素数列挙と呼ぶことにします。素数列挙ができれば、大きい数の素数判定や素因数分解をめっちゃ高速化したり、トーティエント関数、メビウス関数等、数学系のいろんな関数を求めたりできます。最近のもので素数列挙がほぼ必須のものだと Codeforces Beta Round #86 (Div. 1 Only) C. Double Happiness ICPC 国内予選 2011 A
素数定理(そすうていり、英: Prime number theorem、独: Primzahlsatz)とは自然数の中に素数がどのくらいの「割合」で含まれているかを述べる定理である。整数論において素数が自然数の中にどのように分布しているのかという問題は基本的な関心事である。しかし、分布を数学的に証明することは極めて難しく、解明されていない部分が多い。この定理はその問題について重要な情報を与える。 この定理は、18世紀末にカール・フリードリヒ・ガウスやアドリアン=マリ・ルジャンドルによって予想された(ガウス自身の言によればそれは1792年のガウス15歳のときである)。実際にはルジャンドルが初めて自身の著『数の理論』で公表し、少年ガウスがそれを知っていたことはガウスの死後の1863年に全集が出るまでは知られず、ガウス自身は素数定理については友人エンケに一度だけ手紙(1849年)で触れただけであ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く