各方面でご好評をいただいている本講義資料ですが,この度増補・改訂のうえ書籍として出版することが決定いたしました! 書籍限定の書き下ろしの3章 (約100ページ分!)を新たに追加して,2021年9月27日に発売予定です. この資料を気に入っていただいた方は,手に取っていただけるとありがたいです. ここで公開している資料は引き続きオンラインで無料で読めますので,ご安心ください🙇
各方面でご好評をいただいている本講義資料ですが,この度増補・改訂のうえ書籍として出版することが決定いたしました! 書籍限定の書き下ろしの3章 (約100ページ分!)を新たに追加して,2021年9月27日に発売予定です. この資料を気に入っていただいた方は,手に取っていただけるとありがたいです. ここで公開している資料は引き続きオンラインで無料で読めますので,ご安心ください🙇
本日はACL 2017のベストペーパーの1つである以下の論文で用いられている文書表現の方法を紹介します。 A Local Detection Approach for Named Entity Recognition and Mention Detection この論文は、固有表現認識をFeedForward Neural Networkを使って文書分類的に解くという論文です。手法としては、メンションと呼ばれる固有表現候補の左右に位置するコンテキストを固定長のベクトルで表現してネットワークに入力しています。これら左右のコンテキストを固定長のベクトルで表現する際に使われるのが本記事で紹介するFOFE(Fixed-size Ordinally Forgetting Encoding)です。 FOFEの特徴として、単語の位置情報を考慮しつつ文書を固定長で表現できることにあります。今日はこのFOF
Chainerでディープラーニング ここのところ、ディープラーニングのフレームワークはTensorFlowを使っています。以前はChainerも使っていたのですが、Chainer v2.0になり、以前画像認識とか試していたコードも動かなくなってしまい、やる気を失っていたのですよね。 そんな折、たまたまNVIDIAの機械学習のセミナを受ける機会があったのですが、GPU(Titan)積んだサーバに、Jupyterの環境が構築されていて、参加者はサーバにアクセスしてエンターキー連打していくだけでそれっぽい結果が出て、凄いやった気分になるし、絶対初心者は自分で環境出来ないからNVIDIAの環境にお金払うことになるしで、とてもよく設計されたセミナでした。 と書くと凄い悪徳セミナのようですが、Jupyterを使って、説明を読んでから、実際にコードを実行してその結果を確認していくというハンズオン形式は、
TensorFlowとは2015/11/9にオープンソース化されたGoogleの機械学習ライブラリです。この記事ではディープラーニングと言われる多層構造のニューラルネットワークをTensorFlowを利用して構築しています。 TensorFlowはPythonから操作できますがバックエンドではC++で高速に計算しています。macのPython2.7系環境でTensorFlowの上級者用チュートリアルを行い、手書き認識率99.2%の多層構造の畳み込みニューラルネットワークモデルの分類器を構築したときの作業メモです。特別な設定なしにCPU使用率270%メモリ600MByteとちゃんと並列計算してくれました。MNISTランキングを見ると認識率99.2%は上位のモデルとなるようです。 TensorFlowチュートリアル TensorFlowの初心者用と上級者用チュートリアル2つに取り組んでみました
これまでDeep LearningのアルゴリズムをTheanoで実装してきた(2015/4/29)けれど、ここらで巷で大人気のライブラリChainerにも手を出してみた。Theanoの勉強を始めたあとすぐにChainerが公開された(2015/6/9)がユーザや情報が増えるまで待っていた感じ(笑)最近はコードや実験結果などを公開してくれる人が増えてきたので非常に参考になっている。目についたものはてぶに登録しているので、興味を持った手法はがしがし勉強して追試していきたい。 Chainerのバージョンは1.3.2をベースにしている。1.3からPyCUDA/scikit-cudaを独自ライブラリのCuPyに置き換えたとのことで、以前のコードは少し修正しないと動かないようだ。その分、1.3からはインストールがシンプルになっていてとてもうれしい。1.1のころは、Chainerと直接関係ないPyCUD
Preferred Infrastructure(以下PFI)からスピンオフした会社、Preferred NetworksのリリースしたDeepLearningライブラリのChainerがすごい、と話題になっています。*1 解説 Deep Learning のフレームワーク Chainer を公開しました | Preferred Research 公式 Chainer: A flexible framework of neural networks GitHub pfnet/chainer · GitHub ドキュメント Chainer – A flexible framework of neural networks — Chainer 1.1.0 documentation おそらく初露出 ディープラーニング最近の発展とビジネス応用への課題 公式ツイッター chainer (@Chai
PyData Tokyoは「Python+Dataを通じて、世界のPyDataエクスパートと繋がれるコミュニティーを作る」ことを目的として設立されました。その達成に向けた活動の一つとして、月1回のペースで勉強会を開催しています。勉強会はゲスト講師による講演+ディスカッションという構成です。2014年10月に開催された第1回勉強会「PyData Tokyo Meetup #1 - Deep Learning」では、非常に活発な議論が行われ、今後の発展が期待できる内容となりました。 本連載では、勉強会を含む活動を通じてPyData Tokyoが得た「Python+Data」の可能性やナレッジを、読者の方にお届けしていきます。機械学習や大規模データ解析など、幅広いテーマを取り扱っていく予定です。 データ解析に関心を持つ人たちのコミュニティ 「PyData Tokyo」の設立 こんにちは。PyDa
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く