並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 10 件 / 10件

新着順 人気順

linear regression python code with dataset using pythonの検索結果1 - 10 件 / 10件

  • Rustで扱える機械学習関連のクレート2021 - Stimulator

    - はじめに - 本記事では、Rustで扱える機械学習関連クレートをまとめる。 普段Pythonで機械学習プロジェクトを遂行する人がRustに移行する事を想定して書くメモ書きになるが、もしかすると長らくRustでMLをやっていた人と視点の違いがあるかもしれない。 追記:2021/02/24 repositoryにしました。こちらを随時更新します github.com 追記;2021/07/26 GitHub Pagesでウェブサイトにしました vaaaaanquish.github.io - はじめに - - 全体感 - - 機械学習足回り関連のクレート - Jupyter Notebook Numpy/Scipy Pandas 画像処理 形態素解析/tokenize - scikit-learn的なやつ - 各ライブラリと特徴比較 - Gradient Boosting - XGBoos

      Rustで扱える機械学習関連のクレート2021 - Stimulator
    • GPT in 60 Lines of NumPy | Jay Mody

      January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

      • What We Learned from a Year of Building with LLMs (Part I)

        It’s an exciting time to build with large language models (LLMs). Over the past year, LLMs have become “good enough” for real-world applications. The pace of improvements in LLMs, coupled with a parade of demos on social media, will fuel an estimated $200B investment in AI by 2025. LLMs are also broadly accessible, allowing everyone, not just ML engineers and scientists, to build intelligence into

          What We Learned from a Year of Building with LLMs (Part I)
        • Andrej Karpathy — AGI is still a decade away

          The Andrej Karpathy episode. Andrej explains why reinforcement learning is terrible (but everything else is much worse), why model collapse prevents LLMs from learning the way humans do, why AGI will just blend into the previous ~2.5 centuries of 2% GDP growth, why self driving took so long to crack, and what he sees as the future of education. Watch on YouTube; listen on Apple Podcasts or Spotify

            Andrej Karpathy — AGI is still a decade away
          • NeurIPS 2022 参加報告 後編

            はじめに プロダクトオーナー兼機械学習エンジニアの本田志温です。 弊社高橋による前回の記事「NeurIPS 2022 参加報告 前編」 に引き続き、同会議の参加報告をします。本記事では、個人的に気になった論文(計53本)をいくつかのカテゴリで分類し、カテゴリごとに研究トレンドを大づかみにできるような形で書きます。特に重要だと感じた論文は詳しめに取り上げます。 会場の様子 また、本記事に関心をお持ちになった方は以下の過去記事もお楽しみいただけるのではないかと思います。ぜひ合わせてご覧ください。 AI開発の新たなパラダイム「基盤モデル」とは NeurIPS 2021 参加報告 前編 NeurIPS 2021 参加報告 後編 深層学習の原理 深層学習は様々なタスクで高い性能を発揮することが経験的に知られていますが、「なぜうまくいくのか」という原理についてわかっていることは多くありません。そのため

              NeurIPS 2022 参加報告 後編
            • 17 types of similarity and dissimilarity measures used in data science. | Towards Data Science

              The following article explains various methods for computing distances and showing their instances in our daily lives. Additionally, it… Various ML metrics. Inspired by Maarten Grootendorst. "There is no Royal Road to Geometry." – Euclid Quick note: Everything written and visualized has been created by the author unless it was specified. Illustrations and equations were generated using tools like

                17 types of similarity and dissimilarity measures used in data science. | Towards Data Science
              • Practical SQL for Data Analysis

                Pandas is a very popular tool for data analysis. It comes built-in with many useful features, it's battle tested and widely accepted. However, pandas is not always the best tool for the job. SQL databases have been around since the 1970s. Some of the smartest people in the world worked on making it easy to slice, dice, fetch and manipulate data quickly and efficiently. SQL databases have come such

                  Practical SQL for Data Analysis
                • Data Visualization Using Python

                  We have seen that Python language is a powerful tool for data science and data operations, but how powerful is Python for Data visualization? One of the key responsibilities of Data scientists is to communicate results effectively with the stakeholders. This is where the power of visualization comes into play. Creating effective visualizations helps businesses identify patterns and subsequently he

                    Data Visualization Using Python
                  • Version 1.0

                    Version 1.0# For a short description of the main highlights of the release, please refer to Release Highlights for scikit-learn 1.0. Legend for changelogs Major Feature something big that you couldn’t do before. Feature something that you couldn’t do before. Efficiency an existing feature now may not require as much computation or memory. Enhancement a miscellaneous minor improvement. Fix somethin

                    • Python/STAN Implementation of Multiplicative Marketing Mix Model, with Deep Dive into Adstock... | Towards Data Science

                      Python/STAN Implementation of Multiplicative Marketing Mix Model, with Deep Dive into Adstock… Python/STAN Implementation of Multiplicative Marketing Mix Model With Deep Dive into Adstock, Diminishing Return, ROAS, and mROAS Full code and simulated dataset are posted on my Github repo: https://github.com/sibylhe/mmm_stan The methodology of this project is based on this paper by Google, but is appl

                        Python/STAN Implementation of Multiplicative Marketing Mix Model, with Deep Dive into Adstock... | Towards Data Science
                      1