並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 11 件 / 11件

新着順 人気順

python sqlite cursor objectの検索結果1 - 11 件 / 11件

  • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

    Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

      GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
    • Pythonデータ分析のためのDuckDB(組み込み用途のOLAP系のRDBMS)

      データがSQL対応のDB(データベース)に格納されている場合、SQLを使いデータを取得し操作することが多いことでしょう。 Python上ではPandasやPolarを使うかもしれませんが、SQLを利用したほうが便利な場面も少なくありません。 そこで登場するのがDuckDBです。 DuckDBは、インプロセス(例えば、Python内駆動)で動作するRDBMS(リレーショナルデータベース管理システム) で、指示を送信するクライアントもそれらを読み取って処理するサーバーも必要ありません。 そこが、PostgreSQLやMySQLなどの通常のRDBMSとの大きな違いです。 また、オンライン分析処理 (OLAP) 系のRDBMSのため、データ分析に適しています。 要するに、DuckDBは「組み込み用途のOLAP系のRDBMS」ということです。 似たようなものに、SQLiteというものがありますが遅速

        Pythonデータ分析のためのDuckDB(組み込み用途のOLAP系のRDBMS)
      • mold と呼ばれる高速なリンカを利用して Chromium を Build してみる - Nao Minami's Blog

        はじめに 現在、広く使われているリンカの中でもっとも高速なものとして有名なのは LLVM project の LLD でしょう。LLD のパフォーマンスについては、公式 document に以下のような benchmark が掲載されていて、GNU ld, GNU gold などと比較して圧倒的に早いという結果が示されています。 Program Output size GNU ld GNU gold w/o threads GNU gold w/threads lld w/o threads lld w/threads ffmpeg dbg 92 MiB 1.72s 1.16s 1.01s 0.60s 0.35s mysqld dbg 154 MiB 8.50s 2.96s 2.68s 1.06s 0.68s clang dbg 1.67 GiB 104.03s 34.18s 23.49s

          mold と呼ばれる高速なリンカを利用して Chromium を Build してみる - Nao Minami's Blog
        • Unix ASCII games

          Unix ASCII games View the Project on GitHub ligurio/awesome-ttygames Unix ASCII games Feel free to submit pull requests to add new games and improve information about those already in the database. How to contribute Check games.yaml out. All information is inside, and you should more or less understand what’s going on by reading it. Sorting is alphabetical. Simplest way to contribute: edit games.y

          • 【Python】SQLite で日本語を全文検索するコード例【N-Gram, FTS4/FTS5】

            日本語の全文検索ぜんぶんけんさく (full-text search, FTS) を、高速に実行する Python コード例です。 Python の標準モジュール sqlite3 を使用しました。 sqlite3 から、SQLiteエスキューライト の全文検索 (FTSエフティーエス) を使ってみました。 試したのは、FTS4エフティーエスフォー と FTS5エフティーエスファイブ の2種類です。 ところで、SQLite の読み方は色々ありました。YouTube では、エスキューライト、エスキューエライト、スィクライト、スィクエライト、などの発音を聞きました。 全文検索の使い方(FTS の使い方)ですが、テキストを N-Gram にして、FTS4 か FTS5 の仮想テーブルに INSERT するだけでした。 (2022年2月5日 追記)MeCab の使い方も書きました。 MeCab で

              【Python】SQLite で日本語を全文検索するコード例【N-Gram, FTS4/FTS5】
            • Handling Concurrency Without Locks

              Concurrency is not very intuitive. You need to train your brain to consider what happens when multiple processes execute a certain code block at the same time. There are several issues I often encounter: Failing to recognize potential concurrency issues: It's not uncommon for both beginner and seasoned developers to completely miss a potential concurrency problem. When this happens, and the concur

              • The Pitchfork Story

                A bit more than two years ago, as part of my work in Shopify’s Ruby and Rails Infrastructure team, I released a new Ruby HTTP server called Pitchfork. It has a bit of an unusual design and makes hard tradeoffs, so I’d like to explain the thought process behind these decisions and how I see the future of that project. Unicorn’s Design Is Fine Ever since I joined Shopify over 11 years ago, the main

                • Bashing JSON into Shape with SQLite

                  Published on 2022-01-04, 1640 words, 6 minutes to read It is clear that most of the world has decided that they want to use JSON for their public-facing API endpoints. However, most of the time you will need to deal with storage engines that don't deal with JSON very well. This can be confusing to deal with because you need to fit a square peg into a round hole. However, SQLite added JSON function

                  • GitHub - taishi-i/awesome-ChatGPT-repositories: A curated list of resources dedicated to open source GitHub repositories related to ChatGPT and OpenAI API

                    awesome-chatgpt-api - Curated list of apps and tools that not only use the new ChatGPT API, but also allow users to configure their own API keys, enabling free and on-demand usage of their own quota. awesome-chatgpt-prompts - This repo includes ChatGPT prompt curation to use ChatGPT better. awesome-chatgpt - Curated list of awesome tools, demos, docs for ChatGPT and GPT-3 awesome-totally-open-chat

                      GitHub - taishi-i/awesome-ChatGPT-repositories: A curated list of resources dedicated to open source GitHub repositories related to ChatGPT and OpenAI API
                    • PCのカメラでISBNコードを読み取りExcelに書籍リストを作る

                      operationはsearchRetrieveで固定です。 queryにはURLエンコードした検索クエリの文字列をセットします。requestsを使えば勝手にエンコードしてくれるので検索文字列そのままで大丈夫です。今回はISBNで検索するのでisbn=”{isbn}”で関数の引数として渡すISBNコードを埋め込みます。ISBN以外にも検索できる項目はいっぱいあるので、興味がある方はリファレンスを読んでみてください。 recordPackingはレスポンスのうち書籍情報の部分をURLエンコードした文字列にするか書籍情報以外のXMLにそのままXMLとして内包させるかを指定できます。省略した場合は前者です。XMLにしておいた方がデータを取り出すのが楽なのでxmlにしています。 レスポンスのXMLは次のようなものです。 <?xml version="1.0" encoding="UTF-8"?>

                        PCのカメラでISBNコードを読み取りExcelに書籍リストを作る
                      • 収集したTwitterの対話データの前処理をする。 - どん底から這い上がるまでの記録

                        以前書いた記事でTwitterの対話データを集める方法を紹介しました。 www.pytry3g.com 紹介した方法を使えば膨大な数の対話データが簡単に手に入るというメリットがありますが、一方でTwitter特有の単語が多く含まれていてデータとして使えないなどのデメリットもあります。 今回はその収集したデータに前処理をかけて、データとして使えるものとそうでないものに分けたいと思います。 関連リンク 正規表現を使う URL URLを含まないテキスト URL(https)を含むテキスト URL(http)を含むテキスト 使用例 おまけ ハッシュタグ サンプル1 サンプル2 サンプル3 - 顔文字 ユーザ名 サンプル1 サンプル2 サンプル3 - 顔文字 サンプル4 - 顔文字 サンプル5 - 顔文字 replaceを使う。 ソースコード おわりに 関連リンク 6.2. re — 正規表現操作

                          収集したTwitterの対話データの前処理をする。 - どん底から這い上がるまでの記録
                        1