並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 18 件 / 18件

新着順 人気順

sqlite python cursor commitの検索結果1 - 18 件 / 18件

  • しくじり先生のように学ぶ「NFS+sqliteで苦労した話から学ぶ、問題解決の考え方」という勉強会をやってみました | Raccoon Tech Blog [株式会社ラクーンホールディングス 技術戦略部ブログ]

    株式会社ラクーンホールディングスのエンジニア/デザイナーから技術情報をはじめ、世の中のためになることや社内のことなどを発信してます。 インフラLinux勉強会SQLiteNFS こんにちは、羽山です。 今回は社内で実施した勉強会をほぼそのままブログ記事にしています。 ITエンジニアたるものドキュメントを残したり勉強会を実施したり分かりやすい設計にリファクタリングしたりなど、日々 知見の伝達 を意識していると思います。主要な知見はたいていそれらの方法で満たせるのですが、しかし残念ながら中には画一的な方法では伝えにくいものもあったりします。 ところで伝統芸能や工芸の世界では技術の継承において 背中を見て学ぶ という方法が用いられることがあるようです。 これと似た手法はITエンジニアの世界にもあって、先輩エンジニアとペアプログラミングをすることで文書では伝わりにくい技術や考え方・テクニックを学ぶ

      しくじり先生のように学ぶ「NFS+sqliteで苦労した話から学ぶ、問題解決の考え方」という勉強会をやってみました | Raccoon Tech Blog [株式会社ラクーンホールディングス 技術戦略部ブログ]
    • Claude Code SDK ではじめる 定額 AI Agent 開発入門 - LayerX エンジニアブログ

      こちらは LayerX AI Agentブログリレー 7日目の記事です。 こんにちは。バクラク勤怠のソフトウェアエンジニアの @upamune です。 最近は社内のいろんなリソースをMarkdownに変換する怪物になっています。 1. はじめに:定額で始めるAI Agent開発 皆さんAI Agent開発していますか?AI Agentを開発する時の障壁の一つとして、LLMを呼び出す際のAPIコールが従量課金のため、なかなか個人で気軽に試せないというのがあると思います。 そこで、今回はClaude Code SDKを利用してAI Agentを作成することで、Pro/Maxプランに加入することで定額でAI Agentを開発できる選択肢があることを紹介します。 2. なぜClaude Code SDKなのか Claude Codeを利用している方は多いと思いますが、Claude Code SDK

        Claude Code SDK ではじめる 定額 AI Agent 開発入門 - LayerX エンジニアブログ
      • Here’s how I use LLMs to help me write code

        11th March 2025 Online discussions about using Large Language Models to help write code inevitably produce comments from developers who’s experiences have been disappointing. They often ask what they’re doing wrong—how come some people are reporting such great results when their own experiments have proved lacking? Using LLMs to write code is difficult and unintuitive. It takes significant effort

          Here’s how I use LLMs to help me write code
        • mold と呼ばれる高速なリンカを利用して Chromium を Build してみる - Nao Minami's Blog

          はじめに 現在、広く使われているリンカの中でもっとも高速なものとして有名なのは LLVM project の LLD でしょう。LLD のパフォーマンスについては、公式 document に以下のような benchmark が掲載されていて、GNU ld, GNU gold などと比較して圧倒的に早いという結果が示されています。 Program Output size GNU ld GNU gold w/o threads GNU gold w/threads lld w/o threads lld w/threads ffmpeg dbg 92 MiB 1.72s 1.16s 1.01s 0.60s 0.35s mysqld dbg 154 MiB 8.50s 2.96s 2.68s 1.06s 0.68s clang dbg 1.67 GiB 104.03s 34.18s 23.49s

            mold と呼ばれる高速なリンカを利用して Chromium を Build してみる - Nao Minami's Blog
          • 最近話題のVector Searchを実現するFaissって何? #1|masuidrive

            Faissを使ったFAQ検索システムの構築Facebookが開発した効率的な近似最近傍検索ライブラリFaissを使用することで、FAQ検索システムを構築することができます。 まずは、SQLiteデータベースを準備し、FAQの本文とそのIDを保存します。次に、sentence-transformersを使用して各FAQの本文の埋め込みベクトルを計算し、そのベクトルをFaissインデックスに追加します。新しいクエリが入力されたときは、sentence-transformersを使用してクエリの埋め込みベクトルを計算し、Faissインデックスを使用して、クエリの埋め込みベクトルに最も類似したFAQの埋め込みベクトルを検索します。 検索結果は、FAQのIDのリストとして返され、最後に返されたIDを使用して、SQLiteデータベースから関連するFAQの本文を取得し、検索結果としてユーザーに表示されま

              最近話題のVector Searchを実現するFaissって何? #1|masuidrive
            • Pythonで簡単にデータベースを扱う(SQLite3) - Qiita

              0.背景 個人的に投資を副業でやっていますが、自宅PCにてそろそろ分析を自動でやりたくなった。 まずはデータを格納する箱(データベース)を学んだので、そのド基礎の部分だけ記録として残しておく。 動作環境 OS : Windows10 pro Python : 3.8.3// Miniconda 4.9.1 sqlite3:2.6.0 (管理ツール:DB Browser for SQLite ※すぐに中身を見るときに便利) ※sqlite3 モジュールをインストールする必要はありません。Python(2.5以降)の標準ライブラリに含まれています。 1.データベース作成~操作 データベースをExcelで考えるととりあえずは理解しやすいと思ったので、今回は最初の部分に関してExcelに置き換えて説明する。 ①まずはデータベースを新規作成して、接続する Excelファイルを作成して、Excelを開

                Pythonで簡単にデータベースを扱う(SQLite3) - Qiita
              • 【Python】SQLite で日本語を全文検索するコード例【N-Gram, FTS4/FTS5】

                日本語の全文検索ぜんぶんけんさく (full-text search, FTS) を、高速に実行する Python コード例です。 Python の標準モジュール sqlite3 を使用しました。 sqlite3 から、SQLiteエスキューライト の全文検索 (FTSエフティーエス) を使ってみました。 試したのは、FTS4エフティーエスフォー と FTS5エフティーエスファイブ の2種類です。 ところで、SQLite の読み方は色々ありました。YouTube では、エスキューライト、エスキューエライト、スィクライト、スィクエライト、などの発音を聞きました。 全文検索の使い方(FTS の使い方)ですが、テキストを N-Gram にして、FTS4 か FTS5 の仮想テーブルに INSERT するだけでした。 (2022年2月5日 追記)MeCab の使い方も書きました。 MeCab で

                  【Python】SQLite で日本語を全文検索するコード例【N-Gram, FTS4/FTS5】
                • ゼロからはじめるPython(68) 郵便番号CSVファイルをデータベースに保存して活用しよう

                  今回は郵便番号から住所を検索するツールを作ってみよう。そのために、郵便局のWebサイトで配布されているCSV形式のファイルを利用して独自のデータベースを作る。たくさんのフィールドを持つCSVファイルから必要な項目だけを抽出する方法や、データベースに保存する方法を紹介する。 郵便番号から住所を手軽に検索できるツールを作ろう Pythonで身近になったAIを実践する鍵はデータ処理にあり ちょっと前まで専門家の領域だと思われていた機械学習、深層学習などAIによる処理がPythonのおかげでとても身近になった。Pythonのscikit-learnやTensorFlowなどのライブラリを使えばデータの自動分類ツールや予測ツールを自作できる。 ただし、そのためにはそれらAIのライブラリに読み込ませるために、しっかり整ったデータを用意する必要がある。大抵の場合、現実に提供されるデータをそのままライブラ

                    ゼロからはじめるPython(68) 郵便番号CSVファイルをデータベースに保存して活用しよう
                  • Pythonで簡単DB - Qiita

                    pythonでsqlite3データベースを簡単に使う SQLとかわかんないよみたいな方だってデータベースに触れたら世界が変わるかも知れない。わかんないけど。 ほとんどの場合ざっくりと簡単なクエリ発行で事足りる場合が多いので、SQLに詳しい方だって多分楽できるかも。 DBクラスとDBwrapperクラス ほぼ素に近い状態でsqliteを使うDBクラスと、そのDBクラスを継承して簡単に使えるファンクションを追加したのがDBwrapperクラス。 DBwrapperクラスはDBクラスのファンクションを全部使えるのでとりあえずDBwrapperクラスを取り込んで使えば便利。 たとえば dict型でデータを作って set とか読んでやればDBにデータを挿入・更新できたり get をforで回してやれば1行づつデータが取り出せる。 データの件数も count で取り出せるぞ、手軽だね。 詳しくは以下の

                      Pythonで簡単DB - Qiita
                    • Pythonでいいね機能を実装する方法 - Python転職初心者向けエンジニアリングブログ

                      ソーシャルメディアやウェブアプリケーションでは、ユーザーがコンテンツに対して「いいね」や「いいね」ボタンを押す機能が一般的です。これはユーザーエンゲージメントを向上させ、コンテンツの評価や共有を促進するための重要な機能です。今回は、Pythonを使用してシンプルないいね機能を実装する方法について説明します。 いいね機能の基本的な仕組み いいね機能の基本的な仕組みは、ユーザーがコンテンツに対していいねを押すと、その情報がサーバーに送信され、データベースに反映されるというものです。具体的には、各コンテンツに一意なIDがあり、ユーザーがボタンを押すとそのIDとユーザーIDがデータベースに保存されます。 データベースの設計 まず、いいね情報を格納するためのデータベースを設計します。以下は、SQLiteを使用した簡単な例です。 import sqlite3 conn = sqlite3.connec

                        Pythonでいいね機能を実装する方法 - Python転職初心者向けエンジニアリングブログ
                      • StreamlitでEDINETから有価証券報告書をダウンロードして分析するWEBアプリをサクっとつくろう

                        参考文献 ※1 EDINET API機能追加に係る利用者向け説明会資料 ※2 EDINET API仕様書 Version2 ①会社名の選択 まず会社一覧及び、会社のEDINETコードが必要になってきます。 これについてはAPIで取得する方法はなく公式サイトからZIPを落としてくるか ここからプログラム的に自動でダウンロードする必要があります。 今回は手動であらかじめダウンロードしたものを使います。 公式サイトからダウンロードすると毎回リンクが変わる、上記の直接リンクだと固定という謎仕様のようです(ドキュメントにもそうかいてある) ZIPを展開するとShift-JISのCSVが手に入ります。文字コードに注意しましょう。EDINETからダウンロードするCSVはUTF16なのにこっちはShiftJISなのです。 中身は上記のようなもになっています。 末尾に0がついているものの証券コードも入ってい

                          StreamlitでEDINETから有価証券報告書をダウンロードして分析するWEBアプリをサクっとつくろう
                        • Bashing JSON into Shape with SQLite

                          Published on 2022-01-04, 1640 words, 6 minutes to read It is clear that most of the world has decided that they want to use JSON for their public-facing API endpoints. However, most of the time you will need to deal with storage engines that don't deal with JSON very well. This can be confusing to deal with because you need to fit a square peg into a round hole. However, SQLite added JSON function

                          • GitHub - taishi-i/awesome-ChatGPT-repositories: A curated list of resources dedicated to open source GitHub repositories related to ChatGPT and OpenAI API

                            awesome-chatgpt-api - Curated list of apps and tools that not only use the new ChatGPT API, but also allow users to configure their own API keys, enabling free and on-demand usage of their own quota. awesome-chatgpt-prompts - This repo includes ChatGPT prompt curation to use ChatGPT better. awesome-chatgpt - Curated list of awesome tools, demos, docs for ChatGPT and GPT-3 awesome-totally-open-chat

                              GitHub - taishi-i/awesome-ChatGPT-repositories: A curated list of resources dedicated to open source GitHub repositories related to ChatGPT and OpenAI API
                            • PCのカメラでISBNコードを読み取りExcelに書籍リストを作る

                              operationはsearchRetrieveで固定です。 queryにはURLエンコードした検索クエリの文字列をセットします。requestsを使えば勝手にエンコードしてくれるので検索文字列そのままで大丈夫です。今回はISBNで検索するのでisbn=”{isbn}”で関数の引数として渡すISBNコードを埋め込みます。ISBN以外にも検索できる項目はいっぱいあるので、興味がある方はリファレンスを読んでみてください。 recordPackingはレスポンスのうち書籍情報の部分をURLエンコードした文字列にするか書籍情報以外のXMLにそのままXMLとして内包させるかを指定できます。省略した場合は前者です。XMLにしておいた方がデータを取り出すのが楽なのでxmlにしています。 レスポンスのXMLは次のようなものです。 <?xml version="1.0" encoding="UTF-8"?>

                                PCのカメラでISBNコードを読み取りExcelに書籍リストを作る
                              • SQLite3入門 | Python学習講座

                                CREATE文とINSERT文のサンプル それでは接続からSQL実行までのサンプルです。以下のサンプルはカレントディレクトリ直下にexample.dbというdbファイルを作成し、CREATE文でテーブルを作成後、INSERT文でデータを挿入してみます。 import sqlite3 # 接続。なければDBを作成する。 conn = sqlite3.connect('example.db') # カーソルを取得 c = conn.cursor() # テーブルを作成 c.execute('CREATE TABLE articles (id int, title varchar(1024), body text, created datetime)') # Insert実行 c.execute("INSERT INTO articles VALUES (1,'今朝のおかず','魚を食べました'

                                • PythonとSQLの連携: データベース操作の新しい次元 - Python転職初心者向けエンジニアリングブログ

                                  **** SQL(Structured Query Language)はデータベース管理システムで広く使用される言語であり、Pythonとの連携により柔軟で効率的なデータベース操作が可能です。今回は、PythonからSQLを利用してデータベースに接続し、クエリを実行する手法について具体的なコードとともに解説します。 1. PythonからSQLiteデータベースに接続する 最初に、PythonからSQLiteデータベースに接続する例を見てみましょう。SQLiteは軽量でシンプルなデータベースエンジンであり、Python標準ライブラリにも含まれています。 Pythonのコード import sqlite3 # SQLiteデータベースに接続 conn = sqlite3.connect('sample.db') # カーソルを取得 cursor = conn.cursor() # データベー

                                    PythonとSQLの連携: データベース操作の新しい次元 - Python転職初心者向けエンジニアリングブログ
                                  • Python+Peewee ORM+SQLiteで1億レコード最速insertチャレンジ | さかな前線

                                    イワシの大群が特に大規模になったとき、それをサーディンランと呼び、個体数は数千万とも数億とも数十億ともいわれるのだそうです。そのような生物量がそれほど密集したとき酸素濃度は足りるんだろうかと心配です。 さて、データ処理の一環で億オーダーのレコード数(ディスク上で~100GB)をもつSQLiteテーブルを構築しようということになり、データ自体は生CSVがある状態でこれをなるべく短時間でDBに流し込むという雑なチャレンジをしてみたので、雑な記録をまとめておきました。 できるだけPythonで閉じさせたかったため、C++などで書くという選択肢はなし。 またDBサイズがサイズなのでインメモリではなくファイルに吐き出します。 またスキーマ定義をさくっとやりたい・DB構築後の扱いを楽にしたいということで、PythonベースのORM Peeweeを使用することにしています。なおPeeweeについて詳細は

                                    • ipblock - 超小型fail2ban - Qiita

                                      の類ですね。出現頻度も高く、postfixに負荷がかかるし、第一気持ち悪いので、自動的にblockする方法を考えました。 これは、Linuxサーバーで不正なパケットを検知し、自動的にブロックするPythonスクリプトです。syslogのログファイルを監視し、指定された正規表現パターンにマッチする不正なパケットをブロックするために、iptablesを使用します。また、特定のIPアドレスがブロックされている期間を追跡するために、sqlite3を使用します。 このスクリプトを使用することで、不正なパケットを自動的にブロックし、サーバーの負荷を軽減できます。また、手動でIPアドレスをブロックする必要がなく、セキュリティの向上に役立ちます。 fail2banという類似するシステムがあります。ipblock.pyはfail2banのように複数のlogを監視しません。何回か、その攻撃があったら、処断する

                                        ipblock - 超小型fail2ban - Qiita
                                      1