並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 8 件 / 8件

新着順 人気順

Data Parallelの検索結果1 - 8 件 / 8件

  • Step Functions Distributed Map – A Serverless Solution for Large-Scale Parallel Data Processing | Amazon Web Services

    AWS News Blog Step Functions Distributed Map – A Serverless Solution for Large-Scale Parallel Data Processing I am excited to announce the availability of a distributed map for AWS Step Functions. This flow extends support for orchestrating large-scale parallel workloads such as the on-demand processing of semi-structured data. Step Function’s map state executes the same processing steps for multi

      Step Functions Distributed Map – A Serverless Solution for Large-Scale Parallel Data Processing | Amazon Web Services
    • GitHub - binpash/pash: PaSh: Light-touch Data-Parallel Shell Processing

      You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert

        GitHub - binpash/pash: PaSh: Light-touch Data-Parallel Shell Processing
      • AWS Step Functions launches large-scale parallel workflows for data processing and serverless applications

        AWS Step Functions expands support for iterating and processing large sets of data such as images, logs and financial data in Amazon Simple Storage Service (Amazon S3), a cloud object storage service. AWS Step Functions is a visual workflow service capable of orchestrating over 10,000 API actions from over 220 AWS services to automate business processes and data processing workloads. Now, AWS Step

          AWS Step Functions launches large-scale parallel workflows for data processing and serverless applications
        • 複数GPUで学習するときのDP(Data Parallel)とDDP(Distributed Data Parallel)の違い - Qiita

          Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

            複数GPUで学習するときのDP(Data Parallel)とDDP(Distributed Data Parallel)の違い - Qiita
          • ABCI上でpytorch distributed data parallelによるマルチノード学習 - Qiita

            なんの記事? pytorchのDistributedDataParallelについての日本語記事があまりにもなかったため,素人がまとめました. 並列処理がわからない人による,わからない人のための,とりあえず使えればいいや的なDDPの解説です. 基本的にABCIでの実行を前提に書かれていますが,それ以外の環境の人たちにも参考になれば幸いです. はじめに おなじみの機械学習フレームワークであるpytorch.気軽にDataParallelで並列処理の学習もできます. ですがfacebookなどの一流の機械学習エンジニアたちはDistributedDataParallelなるものを使った実装がちらほらみられます. そこでpytorchの解説記事を読むわけですが,これがびっくりするほどわからない. というわけで,ABCI上でのDistributedDataParallel(以下DDP)の使い方を自

              ABCI上でpytorch distributed data parallelによるマルチノード学習 - Qiita
            • Preliminary Data on the Senolytic Effects of Agrimonia pilosa Ledeb. Extract Containing Agrimols for Immunosenescence in Middle-Aged Humans: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Study

              Notice You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY li

                Preliminary Data on the Senolytic Effects of Agrimonia pilosa Ledeb. Extract Containing Agrimols for Immunosenescence in Middle-Aged Humans: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Comparison Study
              • PaSh: Light-touch Data-Parallel Shell Scripting

                Overview PaSh aims at the correct and automated parallelization of POSIX shell scripts. Broadly, PaSh includes three components: (1) a compiler that, given as input a POSIX shell script, emits a POSIX shell script that includes explicit data-parallel fragments for which PaSh has deemed such parallelization semantics-preserving, (2) a set of PaSh-related runtime primitives for supporting the execut

                • PaSh: Light-touch Data-Parallel Shell Scripting

                  Overview PaSh aims at the correct and automated parallelization of POSIX shell scripts. Broadly, PaSh includes three components: (1) a compiler that, given as input a POSIX shell script, emits a POSIX shell script that includes explicit data-parallel fragments for which PaSh has deemed such parallelization semantics-preserving, (2) a set of PaSh-related runtime primitives for supporting the execut

                  1