こんにちは、二台目のmbaを買うのをためらっている岡野原です。 アイテム集合に対し、与えられたアイテムと似ているアイテムを求める、という近傍探索問題は古典的な問題でありながら、現在でも多くの改善がされています。特に言語情報、画像情報、行動履歴情報、生物情報、購買情報などありとあらゆるデータが高次元中の点として表現されるようになってきており、こうしたデータの最近傍探索は広い分野で応用範囲がある技術になっています。 アイテムが低次元(例えば2, 3次元)の場合はkd木や最近だとwavelet木を使う方法がありますが、今回扱うケースは各アイテムが高次元(数百万次元)中の点であったり、アイテム間の距離のみが定義されている場合(カーネル関数など)です。アイテム数は数万から数億ぐらいを想定しています。 最近傍探索問題はいくつかありますが、例えばk近傍グラフ構築問題では、 「アイテム集合X = x1,
機械学習・データマイニング全般 変わりゆく機械学習と変わらない機械学習 [物理学会誌 2019]:機械学習・データマイニングについての専門家以外に向けた解説記事 機械学習・データマイニング分野の概要:分野全体の概要と国際会議動向まとめ資料 ML, DM, and AI Conference Map:人工知能,機械学習,およびデータマイニング関係の国際会議関連マップ データマイニング:4種類の主要分析タスクとデータマイニングによる知識発見プロセスについての学部前半レベルの説明資料 社会における機械学習 機械学習・データマイニングにおける公平性 [人工知能学会誌 2019]:アルゴリズム決定の公平性に関する議論 Fairness-Aware Machine Learning and Data Mining: Tutorial on data analysis considering pot
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く