おはようございます. 今回は教師あり学習モデルを題材に,入力データが欠損している場合のベイズ流の対処法を解説します.ベイズモデルというと,たいていの場合は事前分布の設定の仕方云々だとか,過学習を抑制できるだとかに議論が注目されがちですが,個人的には,パラメータや潜在変数を推論することとまったく同じ枠組みで欠損値も同時に推論できることが,実用上非常に便利なベイズの特性だと思っています. データの欠損部分の取扱い データに欠損部分が存在することはよくあります.センサーデータを解析する際は,ネットワークの状況やデバイスの不具合によってデータの一部が欠けた状態で上がってくることがあります.スマホから複数種類のデータを集めるといった状況を考えてみると,例えば加速度センサーの値は継続的に取得できたとしていても,GPSの位置情報はほとんど上がってこないといった場合もあるかと思います.また,何かしらのユー