タグ

可視化と比較に関するshikimihuaweiのブックマーク (2)

  • Jupyter-notebook の作図ライブラリ比較 - Qiita

    時は戦国 Python には作図ライブラリがたくさんあります。 最もデファクトスタンダードに近く歴史も古い作図ライブラリは matplotlib で間違いないでしょうが、それでも R における ggplot2 ほどの地位は確立していないように思います。 特に、Jupyter-notebook 上ではインタラクティブなグラフを表示するニーズがあり、そこでは静的なグラフよりもさらにライブラリが割拠している印象があります。何がどう違うのかよくわかりません。 そこで今回は代表的な作図ライブラリの Jupyter-notebook 上での 違いについて簡単にまとめます。 注意 各ライブラリはいずれも細かくグラフのスタイルを設定可能で、やろうと思えば同じような見た目のグラフを生成することも可能ですが、今回はできるだけ何も設定せずにプロットした時のグラフを使います。 今回試すライブラリたち matplo

    Jupyter-notebook の作図ライブラリ比較 - Qiita
  • Pythonの可視化パッケージの使い分け - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? Pythonで可視化といえばMatplotlibだけど、APIがごちゃちゃしていて覚えにくいのが難点かな。BokehがAPIもうまく整理されていて一番使い勝手がいい気がするけど、まだまだ日語の情報が少ないのが惜しいところ。 これからはWebにも対応できるBokehが伸びてくるんじゃないかと勝手に期待している。 おすすめの使い分け方 簡単なデータを手早くプロットするなら Matplotlib MATLABからPythonに乗り換えたなら Matplotlib かっこよく人に見せたいなら Bokeh 対話操作を入れたいなら Bokeh グ

    Pythonの可視化パッケージの使い分け - Qiita
  • 1