タグ

Permutation Importanceと機械学習に関するshikimihuaweiのブックマーク (3)

  • Python: 特徴量の重要度を Permutation Importance で計測する - CUBE SUGAR CONTAINER

    学習させた機械学習モデルにおいて、どの特徴量がどれくらい性能に寄与しているのかを知りたい場合がある。 すごく効く特徴があれば、それについてもっと深掘りしたいし、あるいは全く効かないものがあるなら取り除くことも考えられる。 使うフレームワークやモデルによっては特徴量の重要度を確認するための API が用意されていることもあるけど、そんなに多くはない。 そこで、今回はモデルやフレームワークに依存しない特徴量の重要度を計測する手法として Permutation Importance という手法を試してみる。 略称として PIMP と呼ばれたりすることもあるようだ。 この手法を知ったのは、以下の Kaggle のノートブックを目にしたのがきっかけだった。 Permutation Importance | Kaggle あんまりちゃんと読めてないけど、論文としては Altmann et al. (2

    Python: 特徴量の重要度を Permutation Importance で計測する - CUBE SUGAR CONTAINER
  • Permutation Importanceを使って検証データにおける特徴量の有用性を測る - Qiita

    記事は、AI道場「Kaggle」への道 by 日経 xTECH ビジネスAI① Advent Calendar 2019のアドベントカレンダー 9日目の記事です。 Permutation ImportanceがScikit-Learnのversion0.22より導入されました。この手法はKaggleでも使われており1 、特徴選択に有用な方法です。記事ではこのPermutation Importanceの解説と、LightGBMで5-foldでCVしながら使ってみた例を紹介します。コードの全文はKaggle Kernelとして登録してありますので、コードだけサクっとみたい方はこちらをどうぞ。 1. Permutation Importanceとは Permutation Importanceとは、機械学習モデルの特徴の有用性を測る手法の1つです。よく使われる手法にはFeature Imp

    Permutation Importanceを使って検証データにおける特徴量の有用性を測る - Qiita
  • 【異常検知】異常原因を特定する - Qiita

    異常検知は、正常データだけで学習できる製造業で人気のある手法です。 そして、異常検知で異常を検出したとして、「異常原因を特定したい」という 要望もよく聞かれます。 そこで、稿では、複数のセンサが付いた異常検知システムにおいて、 異常が発生した場合に、どのセンサが異常値を示しているのかを特定する 方法を検討します。 ※コード全体はこちらに置きました。 ※こちらはPythonデータ分析勉強会#17の発表資料です。 きっかけ 以前に、こんな内容をツイートしたところ、皆さん興味をお持ちのようでした。 昨日、JFEスチールの製造ラインで異常検知する話しを聞いた。 ・数十個にわたるセンサで常時監視 ・異常検知の制約は、異常のみならず異常原因も特定する ・センサは相関が強いものだけを取り出し、主成分分析だけで異常検知 ・これによりコストと納期を大幅に削減 ー続くー — shinmura0 @ 3/14

    【異常検知】異常原因を特定する - Qiita
  • 1