タグ

algorithmとc++に関するshimanpのブックマーク (3)

  • d.y.d. 2倍だけじゃない

    10:01 10/07/20 それでも2倍だ 先日のvectorの伸長度合いの記事に関して 当に1.5倍のほうがメモリ効率がよいのか という反応をいただきました。とても興味深い。みんな読みましょう。 自分の理解メモ: 「再利用ができるから嬉しい」等の議論をするなら、 今までに確保したメモリ (1 + r^1 + ... + r^k) のうち、 有効に使えてるメモリ r^{k-1} (バッファ拡大直後) や r^k (次のバッファ拡大直前) の割合で評価してみようじゃないかという。 まず簡単のために再利用をしない場合を考えると、この割合はそれぞれ (r-1)/r^2、 (r-1)/r になります(途中計算略)。 この利用率が最悪になる瞬間 (r-1)/r^2 を最善にしよう、 という一つの指標で考えてみると、式を微分なりなんなりしてみると r = 2 で最大(25%)となることがわかります

  • 類似画像検索システムを作ろう - 人工知能に関する断創録

    C++版のOpenCVを使ってカラーヒストグラムを用いた類似画像検索を実験してみました。バッチ処理などのスクリプトはPythonを使ってますが、PerlでもRubyでも似たような感じでできます。 指定した画像と類似した画像を検索するシステムは類似画像検索システムと言います。GoogleYahoo!のイメージ検索は、クエリにキーワードを入れてキーワードに関連した画像を検索しますが、類似画像検索ではクエリに画像を与えるのが特徴的です。この分野は、Content-Based Image Retrieval (CBIR)と呼ばれており、最新のサーベイ論文(Datta,2008)を読むと1990年代前半とけっこう昔から研究されてます。 最新の手法では、色、形状、テクスチャ、特徴点などさまざまな特徴量を用いて類似度を判定するそうですが、今回は、もっとも簡単な「色」を用いた類似画像検索を実験してみます

    類似画像検索システムを作ろう - 人工知能に関する断創録
  • C++: 編集距離を求めるアルゴリズム

    編集距離(edit distance)とは二つの文字列がどの程度異なっているかを示す数値であり、レーベンシュタイン距離(Levenshtein distance)を指すことが多い。文字の挿入、削除、置換それぞれを一つの操作として必要な操作の最小数を求めるものだ。例えば、kittenとsittingの編集距離を求める場合、下記のように3回の操作でkittenをsittingに変更できるので編集距離は3となる。 1. sitten (k を s に置換) 2. sittin (e を i に置換) 3. sitting (g を挿入) そこで今回は編集距離を求める複数のアルゴリズムについてC++で実装してみた。 動的計画法 編集距離を求めるもっとも一般的なアルゴリズムは、動的計画法(dynamic programming)だろう。計算時間はO(mn)であり、手軽だ。C++で書いたコードを下に示

  • 1