Level up your coding skills and quickly land a job. This is the best place to expand your knowledge and get prepared for your next interview.
Level up your coding skills and quickly land a job. This is the best place to expand your knowledge and get prepared for your next interview.
はじめに こんにちは。あんどう(@t_andou)です。 前回は人工知能の技術として最近話題のディープラーニング(Deep Learning)で何ができるのかという一例として、モノクロ映画のカラー化をやってみました。 前回の記事はこちら andoo.hatenablog.com 今回もディープラーニングを使った事例の紹介です。 今回紹介するのは画風変換と呼ばれるものです。英語ではStyle Transfer と言うようです。 画風変換とは ある画像(インプット画像)を別の画像(スタイル画像)の画風で描き変えることです。 もしかしたら間違ってるかもしれません。でも、そんな感じです。 技術的に細かいことはこちらをご覧ください GitHub - jcjohnson/neural-style: Torch implementation of neural style algorithm 例えば:(
ニューラルネットというのは、入力があって、複数の階層を経て出力を得るようなグラフ構造のことです。通常は、入力層・中間層・出力層のように層構造になっているようなものを差します。中でも、中間層が1層の、3層構造になっているものが多くとりあげられます。バックプロパゲーションは、誤差逆伝播法とも言って、ニューラルネットワークのパラメータを学習するための手法です。 ニューラルネットについてのサイトや本では、中間層を多層に対応した一般的な表現で説明されることが多いのですが、なかなか式を読み解くのが難しかったりするので、今回は3層で入力が2パラメータ、出力は1つ、中間層のニューロンは2つという、単純なものを取り上げます。 では、3層ニューラルネットワークでの判定時のデータの流れを見てみます。 3層ということになっていますが、実際の処理は2層になっています。実装するときには2層だと考えたほうがわかりやすい
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く